Natural Language Processing
A Paninian Perspective

1

Akshar Bharati

Vineet Chaitanya
Rajeev Sangal

Department of Computer Science and Engineering
Indian Institute of Technology Kanpur

With contributions from
K.V. Ramakrishnamacharyulu
Rashtriya Sanskrit Vidyapeetha, Tirupati

Prentice-Hall of India
New Delhi

1© Prentice-Hall of India. For private use only. Do not make copies.

Contents

List of Figures
Preface
Acknowledgements

1 Introduction to NLP
1.1 Introduction.,
1.1.1 Some Example Applications
1.1.2 Achievements and Brief History
1.1.3 Open Problems
1.2 Major Goal
Further Reading

2 Language Structure and Language Analyzer
2.1 Introduction to Language Structure
2.2 Overview of Language Analyzer
2.2.1 Morphological Analyzer
2.2.2 Local Word Grouper (LWG)
223 CoreParser L.
2.3 Requirements of Computational Grammars
2.3.1 Computational Aspect
2.3.2 Systems Aspect Lo
2.3.3 Large System Aspect
Further Reading
Exercises

3 Words and Their Analyzer

3.1 Introduction.,
3.2 Why Morphological Analysis
3.3 Morphological Generation Using Paradigms
3.4 Morphological Analysis Using Paradigms
3.5 Speeding Up Morphological Analysis by Compilation* . . .
3.6 Morphological Analyzer — Some Additional Issues*

Further Reading

Exercises L

ii

4

Local Word Grouping

4.1 Imtroduction.
4.2 Verb Groups oo

4.2.1 KriyaRupa Charts
4.3 Noun Groups v ot v i it i v i it i e
4.4 Strategy for Grammar Development
4.5 Semantics in Stages
4.6 Some Open Problems
4.7 Conclusionso

Further Reading

Exercises

Paninian Grammar

5.1 Imtroduction
5.2 The Semantic Model
5.3 Free Word Order and Vibhakti
5.4 Paninian Theory
5.4.1 Karaka Relations
5.5 ActivePassive. oo
5.6 Control e
5.6.1 Karaka to Vibhakti Mapping
5.6.2 Karaka Sharing00,
5.7 Summary
Further Reading
Exercises

Paninian Parser

6.1 Introduction.
6.2 CoreParser o
6.2.1 Constraints L.
6.3 Constraint Parser Using Integer Programming
6.4 Constraint Parser Using Matching and Assignment
6.4.1 Reduction to Bipartite Graph Matching
6.4.2 Reduction to Assignment Problem
6.5 Preferencesover Parses.
6.6 Lakshan Charts for Sense Disambiguation
6.7 Summary e e
Further Reading
Exercises e

iii

7 Machine Translation 101
Tl SULVEY . . o i e e e e 101
7.1.1 Imtroduction 101
7.1.2 Problems of Machine Translation 101
7.1.3 Is MT Possible? 103
7.1.4 BriefHistory 103
7.1.5 Possible Approaches 104
7.1.6 Current Status 105

7.2 Anusaraka or Language Accessor 106
7.2.1 Background 0. 107
7.2.2 Cutting the Gordian Knot 107
723 TheProblem 108
7.2.4 Structure of Anusaraka System 108
7.2.5 UserInterface, 110
7.2.6 Linguistic Area 111
7.2.7 Giving up Agreement in Anusaraka Qutput 112
7.2.8 Language Bridges 113

7.3 Summary e e e 115
Further Reading 117

Comparison with Some Western Computational Grammars

8 Lexical Functional Grammar 119
81 Imtroduction. 119
8.1.1 Active-Passive and Dative Constructions 120
8.1.2 Wh-movement in Questions 121

82 Overview of LFG 123
83 LFG Formalism 123
8.4 Well-formedness Conditions 125
8.5 Handling Wh-movement in Questions 126
8.6 Computational Aspects 127
8.6.1 Features and Feature Structures 127
86.2 Unification 130
8.6.3 Other Constraints 131

87 Conclusions 132
Further Reading 132

Exercises e e 132

iv

9 LFG and Indian Languages

9.1
9.2

CFG and Indian languages
Functional Specification
Further Reading

10 Tree Adjoining Grammar

10.1
10.2
10.3
10.4
10.5

Lexicalized Grammars and Locality
Lexicalized Tree Substitution Grammar
Lexicalized Tree Adjoining Grammar
Feature Structures
Some Mathematical Aspects,
Further Reading
Exercises L

11 Comparing TAG with PG

111
11.2
11.3

11.4

Introductiono
Similarities Between TAG and PG
Differences between TAG and PG
11.3.1 Optional Arguments
11.3.2 Sentential or Verbal Arguments
11.3.3 Some Important Phenomena
Discussion L L
Further Reading

12 Government and Binding

12.1
12.2

12.3
12.4

Introduction Lo Lo
The GB Modules
12.2.1 X-bartheory
12.2.2 Theta Theory
12.2.3 Government oo o .
1224 Case Theory
12.2.5 Bounding theory
12.2.6 Empty Category Principle (ECP)
12.2.7 Binding theory
12.2.8 Constraints on movement
How Can GB Help in Parsing?
Conclusion
Further Reading

13 Comparing GB with PG

13.1 Introduction
13.2 Summary oo

Appendices

A Panini’s Grammar and Sanskrit

A1 Karaka Theory
A2 Control
Further Reading

B Roman Notation for Devanagri
Bibliography
Index

Glossary

179
179
183

185
185
188
189

191

193

215

203

List of Figures

2.1 Nouns as argumentsof verb
2.2 A verb (uDa) as argument of another verb (kaha)
2.3 Nominal with verbal modifier
2.4 A verb-verb modification o000
2.5 Verbalnoun
2.6 Aparsestructure
2.7 Structure of the parser

3.1 Word forms for the root laDakaa
3.2 Paradigm table for ‘laDakaa’ class
3.3 Dictionary of roots oL
3.4 Word forms and paradigm table for bhaaSaa
3.5 Morphological analyzer input-output
3.6 (a) Compilation of paradigms; (b) Morphological analysis

3.7 Sorted reverse suffix tableo
3.8 (a) Ordered binary tree and (b) Trie structures

4.1 Table of some verb sequences

5.1 Structure of an action,
5.2 Levels in the Paninian model
5.3 Default karaka chart L.
5.4 Transformationrules
5.5 More transformation rules (for complex sentences)
5.6 Modifier-modified relations for sentences G.1, G.2 and G.3 .
5.7 Parse structure for sentence H.1
5.8 Parse structure for sentence H.2 L.
5.9 Another parse structure for sentence H.2
5.10 Alternative parses (a) and (b) for the sentence H.3

6.1 Structure of the Parser,
6.2 Default karaka chart for ‘khaa rakhaa’
6.3 Constraint graph for sentence S.1
6.4 Solution graphs for sentence S.1.
6.5 Abbreviations for the karakas
6.6 Bipartite graph for constraint graph in Figure 6.3
6.7 Maximal (complete) matchings of bipartite graph of Figure

6.6. . - . .
6.8 Semantic type hierarchy

vii

16
17
18
19
20
21
22

36
36
38
40
41
43
43
45

o1

95
97

viii

7.1 Block schematic of anusaraka, 109
7.2 Different interfaces for anusaraka 111
8.1 Representation of sentence (5) 122
8.2 C-structure and f-structure for passive sentence (6) 124
8.3 An example of unification of f-structures 126
8.4 Graph representation of a f-structure 128
8.5 Graph and matrix notation for a complex feature structure 129
10.1 Some example initial trees 140
10.2 Result of substituting aspe in apoy - - - - - o . L oL 141
10.3 Derived tree ysfor ‘the boy saw a girl’ 142
10.4 Initial trees associated with ‘kicked’ and ‘kicked the bucket’ 143
10.5 Derived tree for ‘the boy kicked the bucket’ 144
10.6 Derivation trees for ‘the boy kicked the bucket’ 144
10.7 Pictorial rendering of adjoining operation 146
10.8 A derived tree and after adjoining with Bguickty - - - - - . . 148
10.9 Auxiliary trees for relative clause 149
10.10 Result of adjoining an auxiliary treeon v4 150
10.11 Derivation trees for vy and v 151
10.12 Auxiliary tree for ‘thought’. 152
10.13 After adjoining Bthought N Brei—subj—ate, and the result in 4 153
10.14 Feature constraints for agreement 154
10.15 Structures after adjoining and substitution operations . . . 155
10.16 Feature constraints for agreement and modality 156
10.17 Adjoining with feature constraints 158
11.1 A TAG derivation tree. 164
11.2 A PG modifier-modified tree 165
11.3 Auxiliary tree for ‘thought’ 167
121 GBModel 171
12.2 GB Principles Lo 171
13.1 Levels in the Paninian model 180
132 GBModel 181

13.3 Relationships between terms in the two models 182

Preface

This book presents a Paninian perspective towards natural language
processing (NLP). It has the following three objectives:

1. To introduce the reader to NLP,

2. To introduce the reader to Paninian Grammar framework applied to
the processing of modern Indian languages,

3. To compare Paninian Grammar framework with modern Western
computational grammar frameworks.

Thus, the proposed book meets two goals at the same time: (1) It provides
an introduction to NLP for Indian languages to students and faculty who
are not initiated to NLP; and (2) It acts as a source book on computational
Paninian framework bringing all the material in one place.

The first half of the book presents a computational grammar that has
been developed for processing of Indian languages. Indian languages like
many other languages of the world have relatively free word order. They
also have a rich system of case-endings and post-positions (collectively
called vibhakti). In contrast to this, the majority of grammar frameworks
are designed for English and other positional languages. They are extended
as an afterthought to handle free-word order languages, usually paying a
price both in elegance as well as in processing efficiency. The unique aspect
of the computational grammar described here is that it is designed for free
word order languages and makes special use of vibhakti. It takes the con-
cept of vibhakti and karaka relations from Paninian framework, and uses
them to give an elegant account of Indian languages. Efficient parsers for
the grammar are also described. The computational grammar is likely to
be suitable for other free word order languages of the world.

xi

Chapter 1 discusses applications and issues in Natural Language Pro-
cessing (NLP). A history of relevant ideas in different disciplines is discussed
in brief. This is followed by the present symbiosis of ideas from computer
science and linguistics, leading to some of the modern grammar formalisms.

Chapter 2 introduces the structure of language and presents an over-
all architecture of our system for analyzing sentences in Indian languages.
Properties desirable in computational grammars are also discussed. Chap-
ter 3 discusses morphological analysis, and how a simple but efficient an-
alyzer can be built. Chapter 4 discusses local word grouping in Indian
languages. The aim of this process is to group sequences of words to pro-
duce vibhakti for nouns and verbs. These vibhaktis are used in the next
stage of parsing.

Chapters 5 and 6 are the main chapters on Paninian Grammar. In
Chapter 5, the notions of karaka charts, karaka assignment, etc. are dis-
cussed. It is argued and shown that a grammar based on these notions,
successfully handles karaka relations, control, active-passives, etc. Chapter
6 discusses constraint based parsing for the Paninian Grammar. It discusses
a general purpose parsing algorithm, as well as a more efficient algorithm
for a restricted class of grammars. Finally, some applications related to
machine translation are discussed in Chapter 7.

Second half of the book presents a comparision of Paninian Grammar
(PG) with existing modern Western grammar frameworks. It introduces
three Western grammar frameworks using examples from English: Lexical
Functional Grammar (LFG), Tree Adjoining Grammar (TAG), and Govern-
ment and Binding (GB). The presentation does not assume any background
on part of the reader regarding these frameworks. Rather than trying to
give a comprehensive coverage of each of the frameworks, the presentation
brings out saliant points about each. Each presentation is followed by a
chapter containing either a discussion on applicability of the framework to
Indian languages in particular (and free-word order languages, in general)
or a comparision with Paninian Grammar framwork.

The material in this book has been class tested in regular courses on
NLP at B.Tech., M.Tech. and Ph.D. level at I.I.T. Kanpur, and during
several short-term intensive courses on NLP. The material is suitable for
anybody interested in NLP who has one of two backgrounds: computer
science or linguistics. Actually, what is really needed is an aptitude for
language and an analytical mind. Somebody who possesses these but not
the background will still be able to follow the material.

Vineet Chaitanya
Rajeev Sangal
Kanpur
June 1994

xiii

Acknowledgements

Much of this material has been developed over the years by the research
done by our group, in which large number of students and project staff
have been involved. Some of the names of people including titles of their
theses and papers can be found in references at the end. Many others
contributed by asking questions and raising issues. These include at least
seven batches of students of B.Tech. and M.Tech. who did courses on NLP.
Also included are the participants of short term courses on NLP held at
IITK during the summers of 1990, 1991, and 1992, and at University of
Hyderabad in January of 1992 and 1993.

Many visitors and collaborators have also contributed in development
of the theory. Special mention must be made of Dr. K.V. Ramakrish-
namacharyulu of Rashtriya Sanskrit Vidyapeetha, Tirupati, who has con-
tributed to the theory in a major way. He is the co-author of Chapter 5
and Appendix A.

We would like to thank Prof. B.N. Patnaik for his support to this enter-
prise and for discussions during the early stages of the work. We enjoyed
our intense discussions and arguments on Government and Binding with
Profs. Probal Dasgupta, K.A. Jayaseelan and R. Amritavalli during the
memorable short term course on NLP at Hyderabad in January 1992. We
are thankful to Prof. U.N. Singh of University of Hyderabad for many inter-
esting discussions and support. We also wish to thank Prof. E. Annamalai
of Central Institute of Indian Languages, Mysore; Dr. G. Umamahesh-
war Rao, Panchanan Mohanty, P.R. Dadegaonkar, and Gautam Sengupta
of Universtiy of Hyderabad; Dr. S. Rajendran of Tamil University, Than-
javur; Drs. A.S. Reddy and Narayanamurthy of A.I. Lab., University of
Hyderabad; Prof. Ananthanarayana of Mysore (formerly of Osmania); and
Dr. Thakur Dass of Kendriya Hindi Sansthan, Agra.

Many people have been involved in the implementation of Paninian
parser and anusaraka among Indian languages. The following people played
amajor role in the earlier versions of the implementation: Sivasubramanian,
B. Srinivas, P.V. Ravisankar, and Brajesh Pande. The current implementa-
tion has had major contributions from: Mrs. Amba P. Kulkarni, Vasudeva
Verma, and V.N. Narayana. The following people have worked on build-
ing and checking lexical databases for anusaraka and Paninian parser for
Hindi, Kannada, Telugu, Tamil, etc.: Rekha Srivastava, Neelam Tripathi,
Pushpa Saxena, Alka Srivastava, Kamala Gangadharaiya, Rajeshwari Ra-
maseshan, Suguna Sathyamurthy. Dr. Dhanendra K. Jha has helped us
whenever we had a question on the Paninian view towards a language phe-
nomenon. Mrs. Amba P. Kulkarni’s contributions need special mention:

developing programs, managing the building of lexical databases, and in
providing new ideas at both linguistic and system level. She has also been
the sounding board for many ideas.

This manuscript has been prepared with secretarial assistance from Mrs.
Azra Shirin.

Support for the research work described here has come from Ministry of
Human Resource Development (MHRD), Department of Science and Tech-
nology (DST), and Department of Electronics (DOE) of Government of
India. DOE supported the 5-week long courses on NLP, in which much of
this material was presented in front of linguists from all over the country,
for the first time. DST project provided support for carrying out investi-
gations comparing the Paninian Grammar (PG) with the modern Western
computational grammars. Prof. R. Narasimhan as chairman of the steering
and evaluation commitee of the project made valuable suggestions about
what needed to be done at various junctures. Indian Society of Techni-
cal Education (ISTE) of MHRD provided support for preparation of course
material on Paninian Grammar on which the first seven chapters are based.

Vineet Chaitanya
Rajeev Sangal
Kanpur
June 1994

Chapter 1

Introduction to NLP

1.1 Introduction

The goal of natural language processing (NLP) is to build computational
models of natural language for its analysis and generation. First, there
is technological motivation of building intelligent computer systems such
as machine translation systems, natural language interfaces to databases,
man-machine interfaces to computers in general, speech understanding sys-
tems, text analysis and understanding systems, computer aided instruction
systems, systems that read and understand printed or handwritten text.
Second, there is a cognitive and linguistic motivation to gain a better in-
sight into how humans communicate using natural language (NL).

The tools of work in NLP are grammar formalisms, algorithms and data
structures, formalism for representing world knowledge, reasoning mecha-
nisms, etc. Many of these have been taken from and inherit results from
Computer Science, Artificial Intelligence, Linguistics, Logic, and Philoso-

phy.

1.1.1 Some Example Applications

Let us first look at some example applications of NLP.

Natural language interfaces to databases

Computers have been widely used to store and manage large amounts of
data. The data might pertain to railway reservation, library, banking, man-
agement information, and so on. Normally, to use these systems, specialized
computer knowledge is necessary. The goal of natural language interfaces
(NLI) is to remove this barrier. The user is expected to interact in natural

1

2 CHAPTER 1. INTRODUCTION TO NLP

language (by means of a keyboard and a screen). For example, to know
whether a book by Patanjali is available in the library, the user would ask
in NL. The reply would again be in NL, answering whether it is catalogued
but issued to a user, is not among the holdings, is currently misplaced, or
is on the shelf and its number is so and so. LIFER by Hendrix (1978) and
INTELLECT by Harris (1977) were some of the early systems.

Natural language interface to computers

Some general NL interfaces to computers have also been developed. UC,
short for UNIX consultant, developed at Berkeley (Wilensky, 1982) assists
a new user to UNIX operating system. In case of a problem the user can
seek its assistance. It engages him or her in a dialogue and tries to tell him
or her what to do. It uses scripts and knowledge about user’s goals and
plans.

Question answering systems

Several systems have been built as research vehicles in NLP which answer
questions about a domain. LUNAR by Woods (1977) was an early system
that answered questions about the moon rocks. It makes a sophisticated
analysis of quantification in the NL sentences.

Story understanding

There are question-answering systems which, given a story in a specified
domain, answer questions about it; for example, about going to restaurants.
Much of this work was carried out at Yale under Schank and Abelson
(1977). They firmly established the need for domain knowledge, lots of it,
for understanding. They also made interesting models of goals, intentions
and plans among humans beings.

Machine translation

There has been much renewed interest in machine translation (MT) since
the early 80s. There have been several large efforts: Eurotra for Euro-
pean languages, Mu for Japanese and English, KBMT between English
and Japanese at Carnegie Mellon University, anusaraka among Indian lan-
guages at I.I.T. Kanpur, etc.

1.1.2 Achievements and Brief History

The field of NLP or computational linguistics has emerged in its own right
and a large number of research groups around the world are working on it.

1.1. INTRODUCTION 3

A survey by Association of Computational Linguistics (ACL) (Evens and
Karttunen, 1983) listed 85 universities conducting courses in computational
linguistics. Since then, the activity has only grown (Dorr, 1994). Vigorous
activity exists in several other research centres as well. There have been
major advances since the early sixties and since the days of the ALPAC
report. Briefly, we will sketch the advances in each of the related disciplines
separately, and finally how they have been brought together in recent years.

Linguistics

The generative enterprise on the linguistics front started in the late fifties.
It brought about a sea change in the view of linguists towards language.
Linguistic theories were now expected to be mathematically precise in their
description of language. (See Winograd (1983; pp. 8-13) for an interesting
account of the history of linguistics as seen through the eyes of a computer
scientist.) Under the generative enterprise, several formal theories of syntax
were developed successively over the years and the notion of derivation of
a sentence from the theory was formalised.

The field also saw the rejection of many alternative theories, including
semantic theories (Fillmore (1968)). But coupled with the formal rejection
was the absorbing of semantic ideas in the syntactic theories, most notably,
of theta roles in transformational generative theories such as GB.

The need for syntactic and semantic features (Katz and Fodor (1963))
was identified and widely accepted. The need for associated lexicon was
also assumed but little attention was paid to actually building it for any of
the theories by theoretical linguistics. Work on preparing dictionaries (par-
ticularly for English) went unnoticed in the background. Lexicographers
started using computers, again quite unnoticed. The area has now come
with a bang and is making major contributions to lexicon design, semantic
features, automatic analysis of large corpora, and even parsing. Statisti-
cal approaches are being tried with great success for limited tasks such
as tagging part-of-speech for words in a corpus. These feed into grammar
based approaches. Thus, the statistical and the grammatical approaches
are complementing each other.

Artificial intelligence (AI)

AT workers attempted to look at the problem of language as that of com-
munication. As a result, they looked at all aspects: syntax, semantics and
pragmatics (Narasimhan, 1981). The role of World knowledge and domain
knowledge in natural language understanding and communication was rec-
ognized and given great importance. Several impressive systems were built,
but they operated either in a toy domain (Winograd (1972)) or in a real
but artificially narrow domain (Schank and Abelson (1977)). Advances in

4 CHAPTER 1. INTRODUCTION TO NLP

syntax in linguistics were largely ignored by the research workers to their
detriment.

Knowledge representation and inference emerged as an important area
in AT with significant contributions from AI workers in NLP (Findler, 1979).
First order logic, semantic nets, frames, etc. play an important role (Sowa,
1985). These can be viewed by the linguist as the generalization of the idea
of simple semantic features. However, they have more power, in the sense,
that constraints can be expressed in these which cannot be expressed as
semantic features alone.

Logic programming has emerged as an important area. Its influence
particularly the notion of unification, is evident on the computational gram-
mars of the 1980s.

Formal languages and compilers

Grammar formalisms particularly Chomsky hierarchy which was developed
in the early years of the generative enterprise found great use in computer
science in an unanticipated area: in language compilers for programming
languages (which are translators of sorts from a high-level programming
language to machine language). The theory of hierarchy of grammar for-
malisms was studied and refined. Special cases of context free grammar for-
malism were discovered which were important to programming languages.
But perhaps, the advance most important to NLP is the development of
parsing algorithms.

Parsing algorithm (or a parser based on it) takes a grammar and a
sentence and answers the question whether the sentence can be derived
from the grammar. If the answer is yes, usually, it also shows the derivation
or the parse tree. Parsing algorithms have been thoroughly researched for
regular and context free grammars. Several results are known for other
classes of languages as well. A consequence of all this is that building
syntactic parsers for various old or new proposed grammar formalisms is
no longer a difficult task.

Other advances in computer science

Other advances in computer science which have made NLP possible today
are bigger and faster computers, and the development of database technol-
ogy.

If we compare the size of main memory of the first digital computer
(ENTAC) in 1946 with todays smallest personal computer (PC) that one
can buy, we find an almost hundred times increase. ENTAC had a few
thousand bytes of memory whereas the PC has 640,000 bytes to a few
million bytes. (A byte can roughly store a character.) Larger commercially
available computers have ten to hundred times more memory than a PC.

1.1. INTRODUCTION 5

The same story holds for speed of operations performed by the computer (or
its CPU or central processing unit). Besides the main memory mentioned
above, much larger amount of storage is available on disk (typically 200
million to several thousand million bytes).

To harness this power, major software systems have been developed.
They assist the user in writing computer programs (such as parsers) or
preparing the data (such as grammars and lexicon related data). The most
important among them are high-level languages and operating systems.

Development of database systems allows easy storage on and retrieval
from disk of large dictionaries, lexicons, lexicalised grammars, and corpora
of text.

The symbiosis

Many of the above mentioned advances across disciplines were integrated
in the 1980s. This was due to the fact that people from different disciplines
were working together. All this led to the formation of a new field called
Computational Linguistics or Natural Language Processing. The tempo of
research in this new field has quickened. The influence of the availability
of powerful computer systems at low cost is markedly evident in the early
1990s.

The 1980s saw the birth or maturing of several grammar formalisms
which are particularly suited for computation of English or other configura-
tional languages (relatively fixed word order language). Major among them
are Lexical Functional Grammar (LFG) by Kaplan and Bresnan (1982),
Generalized Phrase Structure Grammar (GPSG) by Gazdar et. al. (1985),
Tree Adjoining Grammar (TAG) by Joshi (1985), etc. Because of the in-
fluence of logic programming, unification has become a basic operation in
some of these grammar formalisms.

Similarly, knowledge representation has had major impact on natural
language semantics and vice versa in the 1980s. Any computational linguist
working on semantics today freely draws upon logic and other knowledge
representation schemes. Similarly, researchers working on knowledge repre-
sentation problems have been deeply influenced by the perspectives of the
language.

In the case of Indian traditional linguistics (Paninian and other gram-
mar formalism) and logic (navya-nyaya), they are beginning to have a
major impact on how Indian languages should be handled computation-
ally (Bharati et al. (1990), (1990b), (1993a), and Sangal and Chaitanya
(1987)). The results may go beyond Indian languages and apply to other
non-configurational languages in the first instance. They might also be
applicable to all languages.

Finally, there is also a subtle influence on working methods, which ap-

6 CHAPTER 1. INTRODUCTION TO NLP

pears when new tools are used. Large number of linguists today are using
computers in preparing sentence corpora, electronic dictionaries and lexi-
cons, in writing scholarly papers using word processors, in doing analysis
of concordances, in testing their grammatical theories on a corpora of sen-
tences, and so on. Here the computer is only a tool helping them do better
or easier what they were doing earlier. But its subtle influences have already
begun to appear.

1.1.3 Open Problems

Although impressive gains have been made in syntax, the areas of semantics
and pragmatics have only been scratched as yet. Semantic interpretation
involves determination and representation of meaning. Some issues that
have to be addressed are: identifying the meaning of a word or a word
sense, determining scopes of quantifiers, finding referents of anaphora (in-
cluding pronouns, reflexives, and definite reference expressions), relation
of modifiers to nouns (in the manner a modifier modifies a noun, e.g. in
cast iron pump vs. in water pump), and identifying meaning of tenses to
temporal objects.

The above raise difficult problems of representation and inference. First-
order logic (FOL) or knowledge representation systems of equivalent power
have difficulty in representing some of the above (e.g., time and modality).
Representing and inferring world knowledge, particularly common sense
knowledge, is difficult. Again, FOL has difficulty in dealing with generalized
quantifiers and exceptions (e.g., most birds fly).

The above problems have to be faced whether one is dealing with a
single sentence or discourse. Some work has been done on the structure of
discourse. Semantics of discourse segments is a harder problem. “Literal”
semantics of single sentences can be used to identify the discourse segments
and, ultimately, their semantics.

When one comes to pragmatics, even the issues are fuzzy. The utterance
under consideration, whether a sentence or a discourse segment, serves a
communication purpose. A simple declarative sentence stating a fact (e.g.,
it is raining) is not just a statement of fact, but serves some communicative
function (e.g., to inform, to mislead about fact, to mislead about speaker’s
belief about fact, to draw attention to already known fact, to remind about
a previously mentioned event or object related to fact, etc.). As can be seen
from the example, the pragmatic interpretation appears to be open ended.
This could of course be a reflection of our ignorance. Speech act theory and
Schank’s work are possible approaches. See Chierchia and McConell-Ginet
(1991) for more details.

1.2. MAJOR GOAL 7

1.2 Major Goal

In all the applications of NLP mentioned in the last section, language is
serving a communicative function. For example, in natural language inter-
faces to databases, users communicate their information need by means of
natural language query. In the context of machine translation, the writer
wants to convey something to his readers through text. This is not surpris-
ing because the primary function of natural language is communication.

A consequence of the above is that NLP focusses on the study of lan-
guage as a means of communication. When a speaker (or a writer) intend-
ing to communicate something to a hearer (or reader) utters or writes, and
the hearer (or reader) on receiving the utterance or text gets that “some-
thing”, communication has taken place. Of course, the communication is
seldom perfect; what the hearer receives is an approximation of what the
speaker wants to convey. But usually it is a remarkably good approxima-
tion. Also, the communication requires not only a common language but
also shared knowledge about the domain in question. Nevertheless commu-
nication takes place.

The above transfer can be looked at from the point of view of informa-
tion. The speaker wants to convey some information to the hearer. Having
decided on the information he wants to convey, he must decide how to code
it in language. Utterance is the only thing actually received by the hearer,
using which he gets the information. It follows, therefore, that the infor-
mation is contained in the utterance, and the hearer must extract it by
decoding it.

The above view is non-controversial in the case of cooperative communi-
cation involving information exchange and has been advanced in the past in
various forms. What we would like to do is to carry this view to the study
of language (especially to what is called syntax or syntactic phenomena).
Various phenomena in a language will be analyzed from the viewpoint of
how they code information. Thus, word order and case endings turn out
to be alternative ways of coding the same information (regarding semantic
relationships between a verb and the nouns, etc.) When the same device
(or phenomenon) in the language is used to code two different kinds of in-
formation, there is a possibility that a conflict may arise. Again the choice
made in the language to handle the conflict must be looked at from the
point of view of information coding. For example, in control when a noun
group is in semantic relation with two different verbs, case ending can be
assigned by only one of the two verbs. A choice must be made by language
in such a way that the information about semantic relations can be decoded
to the extent possible.

The information based approach provides natural connections between
what are called syntax, semantics and pragmatics. In fact, one can view

8 CHAPTER 1. INTRODUCTION TO NLP

all these as providing a theory of communication, each at a different level.
Eventually, they would all be integrated together into a general theory of
communication. Division into three levels, therefore, would be mainly due
to methodological reasons. Knowledge representation and use would also
fit neatly in the framework.

It should be mentioned that when a speaker tries to code information
which he wants to express in a language, certain parts become cumbersome
to code. For example, the gender of the speaker is not coded in the pronoun
‘T’ or the verb. Thus, the coding process sometimes loses information. Even
in such a situation, the hearer is routinely able to decode the information
by using his background knowledge. There are several sources of knowledge
that are used in decoding the information from an utterance. These can be
classified into:

1. Language Knowledge

(a) Grammar
(b) Lexicon

(¢) Pragmatics and discourse
etc.
2. Background knowledge

(a) General world knowledge (including common sense knowledge)

(b) Domain specific knowledge (includes the specialized knowledge
of the area about which communication is taking place)

(¢) Context (verbal and non-verbal situation in which communica-
tion is to taking place)

(d) Culture knowledge

Thus, a hearer can use all the sources of knowledge above to extract infor-
mation from a given utterance.

It is important to keep in mind that the speaker has a model of the
listener. Thus, the speaker codes what information he wants to convey,
using his beliefs about the sources of knowledge available to the listener
among other things (such as, goals, plans, desires, processing capability or
intelligence of the listener). A good speaker will code information in such
a way that his listener(s) can easily decode it.

As already discussed, the study of language from this aspect tries to
look at various language phenomena from the information viewpoint. This
is not to say that there are no other factors. The language does try to
maintain regularity across constructions for ease of acquisition of language
as well as ease of decoding (and coding).

1.2. MAJOR GOAL 9

The notion of grammar from the information viewpoint is a system of
rules that relates information to its coding in language. Moreover, there is a
computational requirement that the grammar should be such that it can be
used by the speaker to code information in the language and by the hearer
to decode the information. When the system of rules relates information
to coding devices at the language level and not at the world knowledge
level, it is called syntax. But clearly, there are strong influences of world
knowledge on the coding. First, it influences the fundamental coding con-
ventions of language. For example, in Indian languages, the post position
marker for noun group that is goal or theme or karma can be dropped
precisely when it is inanimate (because the agent is normally animate and
there is no ambiguity in distinguishing the semantic roles). Similar is the
case when the second person pronoun is dropped from a command. This
happens in all languages including English, which otherwise has a strong
requirement that subject must be present. Second, it affects the coding
for particular utterances used by a speaker because he knows that he need
not try to explicitly code information that is available (or obvious) to the
hearer from world knowledge. Thus, in this view there is no sharp isolation
between syntax and semantics. Rather, the separation is mainly because
of pragmatic reasons of ease of processing or grammar writing. Syntax
uses language coding devices while the semantics also uses world knowl-
edge. Indeed some of the intensively studied phenomena in syntax such
as anaphora (covering reflexive pronouns and reciprocals) may turn out to
be of minor importance once it is realized that the world knowledge is the
major deciding factor. Syntactic rules regarding antecedent of anaphora do
not have the kind of importance given to them in the recent years. Thus,
in our view, syntax is not studied to identify an innate autonomous level,
but rather to relate it to semantics and world knowledge to accomplish the
overall tasks of communication of information.

The above ideas lead to a fundamental change in the view of grammat-
icality. It is known that real life utterances, both spoken and written, are
full of what are called “ungrammatical” sentences. It is important to ex-
plain them because of both theoretical and practical reasons. Any theory
which claims to describe or explain natural language, must explain these
utterances as well (Narasimhan, 1981). It will not be acceptable to say that
such sentences are grammatical in context but ungrammatical otherwise.
That would be bypassing the question. If one considers the communicative
aspect, sentences are always in context. A sentence is considered in isola-
tion solely to simplify analysis (or generation). A sentence analyzer must
not rule out a sentence as ungrammatical when the sentence can make sense
in some context. On the contrary, it must perform an analysis (a plausible
analysis, if possible) which is available to another analyzer say, a discourse
analyzer that takes the context into account. Such a pre-analysis reduces

10 CHAPTER 1. INTRODUCTION TO NLP

the work of the discourse analyzer.

Practical systems must deal with erroneous input as well. Even if an ill-
formed utterance (whether within or without context) is given, the system
should make a guess to obtain the intended meaning. The system may get
the user to verify the meaning, or seek his help in case it is able to obtain
only a partial meaning. But in any case, the response to be produced is
more than just accept or reject.

If the above arguments are accepted, the conventional notion of gram-
maticality undergoes a change. Instead, one can shift to a view that a
sentence has a meaning with an associated cost regarding acceptability.
When the cost is zero, it is a good sentence (or conventionally a grammat-
ical sentence). When the cost is low, the sentence sounds odd but makes
sense. As the cost increases, the sentence sounds more and more odd un-
til it stops making sense. More generally then, a sentence has associated
meaning-cost pairs. A good parser should produce the pairs with lower cost
first. If a low cost pair is rejected because of the context, the next higher
cost pair is considered, and so on.

The language universals now acquire a very different meaning when
compared with those in typological or generative approaches. The uni-
versals relate to information and its coding. Seen from this point of view,
some seemingly diverse phenomena or categories turn out to be a manifesta-
tion of the same information theoretic concept. For example, case endings,
prepositional and postpositional markers, and word order turn out to be al-
ternative ways of coding information about which different languages make
different choices. Free word order and positional languages are simply two
extremes in the spectrum.

The information theoretic approach also prioritizes information, thus
producing a priority among devices used by the language to represent dif-
ferent parts of information. For example, theta roles would be considered
more important than topicalization information as the former affects gross
meaning, whereas the latter brings out a nuance. This would have ramifi-
cation for coding wherever a conflict arises between the devices needed for
them.

At the computational level too, this approach has important conse-
quences. Since language overloads content words with several meanings,
function words with several grammatical roles, and uses other devices so
as to code several kinds of information, the problem of natural language
parsing can be restated as the problem of resolution of ambiguity. The reso-
lution might pertain to: lexical ambiguity, structural ambiguity, topicaliza-
tion ambiguity, grammatical role ambiguity, anaphora reference ambiguity,
quantifier scope or dependency ambiguity, etc. An information theoretic
parser would normally be designed by studying where the information to
resolve the ambiguity resides, and how it can be processed.

1.2. MAJOR GOAL 11

It is important to understand the differences between goals and ap-
proaches of conventional linguistics and computational linguistics. First,
conventional generative linguistics is interested in identifying that aspect
because of which languages can be learnt by the human child so effortlessly.
Thus, this raises questions about the human mind. Second, conventional
linguistics is interested in giving a grammar or grammar framework, but
does not pay attention to the actual processing of sentences using the gram-
mar. As a result, the grammars or grammar frameworks developed by it
often cannot be taken and computed with. On the one hand there is a prob-
lem of efficiency of computation, on the other hand there is a problem of
effectiveness of computation (or computability). The former implies that
the theories are such that if one tries to compute with them, it requires
excessive resources and time. The latter says that the theory cannot be
used for computation because no mechanical procedure can be defined for
it. Third, generative linguistics has concentrated on identifying universals
across all natural languages, but has avoided writing exhaustive grammars
for any particular language.

Psycholinguistics pertains to comprehension and generation of natural
language the way people actually do these activities. For example, if a par-
ticular sentence construction takes longer to comprehend, psycholinguistic
theory tries to account for it. All this requires careful design of experiments
and data collection, and theories to explain them. When the theories being
constructed are computational in nature, this activity falls under a new
field called Cognitive Science.

If the motivation is to build useful NLP systems, theoretical linguistics
work might seem to be unnecessary. Any approach that works should be
good enough. However, the activity being modeled is so complex that ad
hoc solutions are unlikely to work. A sophisticated underlying theory is
essential. At the same time, the present state of knowledge is such that
our theories are incomplete and there are vast gaps in our understanding.
Wherever this happens, per force we will adopt whatever solutions that
work. Thus, there will be a compromise.

Computational linguistics (used synonymously with NLP) has much to
learn from linguistics. However, the theories developed in the latter field
must be adapted or rewritten to suit the needs of NLP. Often, the NLP
workers ignore the work done in linguistics; whereas some of the linguists
feel that their work is directly suitable for computation. Both these views
need to change to find a common meeting point.

Further Reading

Hausser (1989) discusses important issues in computational linguistics
and how the concerns are different from those in linguistics. Shieber (1988)
analyzes differences between computational linguistics and (Chomskyan)

12 CHAPTER 1. INTRODUCTION TO NLP

generative linguistics. Bharati et al. (1992a) discuss computational linguis-
tics and its relation to linguistics. Tennant (1981) describes case studies
and provides overviews of several systems. Section 1.1 here is based on
Bharati et al. (1990Db).

Chapter 2

Language Structure and
Language Analyzer

2.1 Introduction to Language Structure

In this section, we introduce the reader to language structure. As discussed
in Sec. 1.2, we are primarily concerned with the communication function
of natural language; in particular, how information is coded in a natural
language string! and how it is retrieved from the string by a reader. The
purpose of identifying structure is that it will establish a relation between
information? and the string that codes it. Before we can write grammars
and design NLP systems that use the grammars, we need to sharpen our
intuitions about language. This, then, is the purpose of this section.

The basic units in a written string are words. A word is a continu-
ous sequence of alphabetic characters (possibly including the hyphen).? Tt
stands for some information. Further, appropriate sequence of words in
a string can be grouped together in a word group. What this means is
that for such a group of words, there is a pattern or a rule which helps de-
fine the group. Information contained in a word group usually corresponds
in some systematic way to the information contained in the constituent
words. In other words, information is compositional in a group. Similarly,
a word group can be further combined together with other word groups or
words to yield larger groups. Here again, the information contained in the
larger group systematically corresponds to the information contained in the

LA string is a general term for paragraph, sentence, phrase or word.

2Information can also be called as meaning, if it helps the reader to understand it.
Information is actually an impoverished part (or mundane part) of meaning.

3Words are typically separated by delimiters such as blank space, comma, period,
quotation mark, paretheses.

13

14CHAPTER 2. LANGUAGE STRUCTURE AND LANGUAGE ANALYZER

constituents.

When two or more items get grouped into a larger unit, a structure is
formed, which contains the items and the relationship among them. The
information of the larger unit, usually depends on the structure, that is,
the constituent items and their inter-relations.

To keep the structure minimal, we introduce only one kind of structure,
call it modifier-modified structure. There will usually be two items in a
structure called the head and the modifier. * For example, in the following
Hindi string:

sheitaana laDake
naughty boys

‘naughty’ is the modifier and ‘boys’ is the head. Similarly, in the following:

lohe kaa pampa
iron reln. pump
(iron pump.)

pump is the head, and iron is the modifier.> Again, in the following:

paanii kaa pampa
water reln. pump
(water pump)

pump is the head, and water is a modifier. Note that properties of the
head are inherited by the group. Thus, ‘water pump’ is a pump, it is not
water.® Linguistically, we see that the grammatical properties of the head
are inherited by the structure. Thus, in the sentence:

Iron pumps are heavy.

the structure (or word group) ‘iron pumps’ is plural as seen from agreement
with the verb ‘are’. The structure is plural because the head (‘pumps’) is
plural.

In the above examples, we have identified the head and the modifier,
but not the nature of modification. We know from our world knowledge
that the modifier ‘cast iron’ in ‘cast iron pump’ indicates the material out
of which the pump has been constructed, whereas ‘water’ in ‘water pump’

4In Paninian Grammar (PG), such a structure is called visheshya-visheshana bhaava.
Visheshya means roughly the head, and visheshana means modifier.

5This is sambandha (relation) or visheshya-visheshana bhaava in PG.

SThere are some modifiers that make the meaning of the overall structure substantially
different from the head. For example, in ‘a fake gun’, ‘gun’ is the head and ‘fake’ is the
modifier but ‘a fake gun’ is not a gun at all. Thus, it does not have the properties of
the head. There is no space for a detailed discussion here. We will give a computational
answer that the properties of the head are inherited by the structure first, which are
then modified by the modifier. In this case, even the essential property (of being a gun)
gets modified or over-ridden.

2.1. INTRODUCTION TO LANGUAGE STRUCTURE 15

indicates the fluid that gets pumped. But this is not coded in the string. We
will indicate the nature of modification, only if this information is available
from the string.

It should be mentioned again that we have defined a minimal structure.
This structure can be extended or enriched, if necessary, according to the
linguistic theory being used.

Before we look at some commonly occurring structures, we need to
discuss categories of words and structures. Words belong to a small number
of lexical categories, of which two are most prominent: nouns and verbs.
Correspondingly, there are two types of prominent structures (or groups):
nominals and verbals. The head of a nominal is a noun or another nominal.
Similarly, the head of a verbal is a verb or another verbal. A sentence will
be viewed as a verbal. There are a small number of other lexical categories.
They usually occur as a modifier in a structure, not as a head. These are:
adjectives, adverbs, etc.

Let us now look at different kinds of modifier-modified structures.

1. Nominal structure with adjective-noun modification.”

Here, the noun is the head and the adjective is a nominal. Here are
some examples:

safeda caadara

white sheet
moTaa laDakaa
fat boy

The nouns ‘caadara’ (sheet) and ‘laDakaa’ (boy) are the head in the
two sentences, respectively. The nature of modification is not coded
in the string.

2. Verbal structure with noun-verb modification.?

Here, the verb is the head and the noun is a modifier. A verb denotes
an activity (or state), while the noun denotes a participant in the
activity (or state). For example, in the following two sentences:

laDakaa douDaa.
boy ran

laDakaa so rahaa thaa.
boy was sleeping

7Called samaanaadhikarana in PG.
8(Called karaka realation in PG.

16 CHAPTER 2. LANGUAGE STRUCTURE AND LANGUAGE ANALYZER

the activity ‘douDaa’ (ran) and the state ‘so’ (sleep) have the noun
modifier ‘laDakaa’ (boy).

Similarly, in the following example sentence:

laDake ne paanii piyaa
boy ergative water drank

the head is ‘piyaa’ (drank) and the modifiers are ‘laDakaa’ (boy) and
‘paanii’ (water). However, in this case the nature of modification is
known. The ‘boy’ drinks and ‘water’ is what gets drunk.

Different linguistic theories give different accounts of the modification,
i.e., they see different kinds of relations between the noun(s) and the
verb in the above sentences. For example, GB (Government and
Binding) theory or Fillmore’s case grammer talks about thematic (or
theta) relations between them whereas the Paninian theory analyzes
in terms of karaka relations. For instance, a question that needs to
be addressed can be stated as follows: Is the relation between ‘boy’
and ‘drink’ the same as that between ‘boy’ and ‘ran’, and ‘boy’ and
‘was sleeping’. Karaka theory calls all these as karta karaka relations.
Fillmore (1968) calls the first two as agent while the third one as
experiencer. All these will be discussed in Chap. 5. We will use the
neutral term of verb and its arguments to cover all these relations.

We can draw the modifier-modified structure pictorially. For the ex-
ample given above, the structure can be shown as in Figure 2.1. The

pii (drink)

karta karma

laDakaa (boy) paanil (water)

Figure 2.1: Nouns as arguments of verb

root node ‘pii’ gets modified by its children ‘laDakaa’ and ‘paanii’.
The nature of modification is shown by labelling the edges as karta
and karma.

3. Verbal structure with verb as argument of the head verb.®

9Called karaka relation in PG. Karaka is pronounced as kaaraka.

2.1. INTRODUCTION TO LANGUAGE STRUCTURE 17

Arguments of certain verbs are verbs. Consider the sentence:

laDake ne kahaa ki usane patanga uDaayii.
boy mnom. said that he kite flew.
(The boy said that he flew a kite.)

Here the argument of ‘say’ is an entire sentence ‘he flew a kite’.

Diagramatically it is shown in Figure 2.2. As before, a child node is

kaha (say)
ly Yna
laDakaa uDa (fly)
(boy)
karta karma
vaha (he/she) patanga (kite)

[root of usane]

Figure 2.2: A verb (uDa) as argument of another verb (kaha)

a modifier of its parent.

4. Nominal structure with participle verb as a modifier of a noun.

Here, the noun is the head whose modifier is a verb. The verb typically
occurs in non-finite form or participle form. As an example, consider
the sentence:

bhaagataa huaa laDakaa
running boy

where the head is ‘laDakaa’ (the boy). The verb ‘bhaagataa huaa’
(running) is modifying a noun (boy). The noun which is modified by
the verb, is an argument of the verb. The nature of the participle form
determines what the argument is. In the above example, ‘bhagataa

18CHAPTER 2. LANGUAGE STRUCTURE AND LANGUAGE ANALYZER
huaa’ has the ‘taa huaa’ form which indicates karta relation with the

noun it modifies.

This is shown diagrammatically in Figure 2.3. It shows that ‘laDakaa’

laDakaa (boy)

karta—!

bhaaga (run)

Figure 2.3: Nominal with verbal modifier

(boy) is the head whose modifier is ‘bhaaga’ (run). The relation be-
tween them is inverse karta, in other words, the parent node (laDakaa)
is the karta of the child node (bhaaga).

5. Verbal structure with verb-verb modification.

One of the verbs is the head and the other is a modifier but not an
argument of the verb. Here is an example:

laDakaa aama khaakara ghara gayaa.
boy mango having-eaten home went
(Having eaten the mango, the boy went home.)

Here, the participle form ‘khaakara’ (having-eaten) is related to the
main verb ‘gayaa’ (went). The nature of relation is temporal prece-
dence. In other words, the eating action occurred before the going
action. Similarly, we have the following example:

laDakaa aama khaataa huaa ghara gayaa.
eating
(The boy went home, eating a mango.)

Here the second action (gayaa) took place while the first one was in
progress.

The modifier-modified relations in the first example sentence above
are shown as in Figure 2.4. The verb node ‘jaa’ (go) is modified by
its arguments ‘laDakaa’ (boy) and ‘ghara’ (home) as well as the verb

2.1. INTRODUCTION TO LANGUAGE STRUCTURE 19

jaa (go) [root of ‘gayaa’]

temporal precedence

karta (-kara)
laDakaa ghara khaa (eat)
(boy) (home)

karma

aama (mango)

Figure 2.4: A verb-verb modification

‘khaa’ (eat). Note that since ‘laDakaa’ occurs only once, it is shown
only once even though it happens to be karta of both the verbs. Which
verb it modifies, is determined by looking at the sentence construc-
tion and such things as agreement. In the sentence under discussion,
‘laDakaa’ agrees with the verb ‘gayaa’ (went). If the gender of the
noun is changed to feminine ‘laDakii’ (girl), the gender of the verb
also changes to feminine: ‘gayii’ (went).

6. Nominal structure with verbal nouns.

A verbal noun behaves like a noun but it maintains many of its prop-
erties as a verb. In particular, it maintains its relations with its
arguments. What this means is that its modifier-modified structures
have to be identified as usual for verbs. In the following sentence,
for example, even though ‘jaanaa’ (go) is a verbal noun, it maintains
relations with its arguments (Ram and home):

rama kaa ghara jaanaa mohana ko acchaa lagaa.
Ram ’s home to-go Mohan dat. good felt
(Mohan felt good at Ram’s going home.)

‘Jaanaa’ itself is an argument of the main verb as shown in Figure
2.5.

The verbal nouns can usually be identified by their endings or auxil-
iaries.

20CHAPTER 2. LANGUAGE STRUCTURE AND LANGUAGE ANALYZER

acchaa laga (feel good)

mohana
) verbal -noun

jaa (
kaV ﬁa

raama ghara (home)

Figure 2.5: Verbal noun

The structures defined here will be added to and enriched in the sec-
tions that follow. Building such structures for input sentences will serve as
the goal of the NLP systems. In other words, such structures have to be
produced automatically after analysis.

2.2 Overview of Language Analyzer

Parsing is a process by which an input sentence is analyzed and assigned a
suitable structure. Parsing process makes use of two components: a parser
which is a procedural component (a computer program), and a grammar
which is declarative. The grammar changes depending on the language to
be parsed, while the parser remains unchanged. Thus, by simply chang-
ing the grammar, the system would parse a different language. Both the
grammar and the parser, however, depend on the grammar formalism. For
example, for the Paninian formalism, one can develop a parser which takes
any grammar written in the formalism and parses sentences that are speci-
fied (or generated) by the grammar. Thus, the parser does not care for the
grammar or the language, but only for their inter-relation. Similarly, the
grammar for a language depends on the formalism.

One of the key questions that needs to be answered is about the nature
of the parse structure. The answer affects the grammar formalism and
hence the grammar and the parser in a major way. The choice we have

2.2. OVERVIEW OF LANGUAGE ANALYZER 21

made is based on the karaka relations. For us the parse structure for a
sentence consists primarily of the verbal groups and the nominals in the
sentence, and the karaka relations among them. Non-karaka relations may
also be present due to adjectives, hetu (purpose) relation, relational words
like ‘door’ (far) and ‘paasa’ (near), etc. Justification for the choice of parse
structure is given in the later chapters (for example, Chap. 5.). Here, we
present the parse structure without discussing why it has been chosen.
Take the following sentence as an example:

kisaana kheta jotataa hei
farmer farm ploughs
(Farmer ploughs the farm.)

It will be assigned the following parse structure:
jota (plough)
karta: kisaana (farmer)

karma: kheta (farm)

where ‘kisaana’ is the karta and ‘kheta’ is the karma of ‘jota’. This is shown
diagrammatically in Figure 2.6.

jota (plough)

karta karma
kisaana kheta
(farmer) (farm)

Figure 2.6: A parse structure

Having decided on the parse structure, let us now look at the parser
structure. It is fairly obvious that a part of the analyzer, or parser must
take care of morphology. For each word in the input sentence, a dictionary
or a lexicon needs to be looked up, and associated grammatical information
retrieved. The words have to be grouped together yielding nominals, verbal
elements, etc. Finally, the modifier-modified relations among the elements
have to be identified. This is shown in Figure 2.7. We discuss each part of
the parser next.

22CHAPTER 2. LANGUAGE STRUCTURE AND LANGUAGE ANALYZER

sentence
|
v
A — \ - —_ +
|active lexicon|---——----- >|morphological analyzer|
\mmmmmm - / - ——- +

words | with associated
grammatical | information

[\ +- -—— -+
|verb form chart|-——-———--——- > |local word grouper]|
\——— / +- —-—— -+
| word groups
[\ +- —-—— +
| karaka chart & |---—----- > | core parser |
|lakshan charts | | |
\——— e / +- —-—— +

parse | structure
v

Figure 2.7: Structure of the parser

2.2.1 Morphological Analyzer

The morphological analyzer takes as its input a sentence, that is, a sequence
of words. For each of the words, it looks up a lexicon and retrieves such
information as the root of the word, its lexical category, gender, number,
person, tense, etc. In case, a word has multiple meanings, grammatical
information is returned for each of the meanings. For example, the mor-
phological analyzer returns the following information for laDake in Hindji;
note that ‘laDake’ can either be singular-oblique or plural-direct.

laDake --> [root : laDakaa
lexical category : noun
type : common
gender : masculine
number ¢ plural
person ¢ third
case : direct]
[root : laDakaa
lexical category : noun
type : common
gender : masculine

number : singular

2.2. OVERVIEW OF LANGUAGE ANALYZER 23

person ¢ third
case : oblique]

Similarly, the output for ‘pahanaa’ is:

pahanaa --> [root : pahanaa
lexical category : verb
verb type . causative
gender : masculine
number : singular
person : first,second or third
tam : 0]

In the above two examples, each word is either only noun or verb. Word
‘haara’ which takes multiple lexical categories is shown below.

haara --> [root : haara
lexical category : noun
subtype : common
gender : masculine
number . singular
person ¢ third
case : direct/oblique]
[root : haara
lexical category : noun
subtype : common
gender : masculine
number : plural
person ¢ third
case : direct 1]
[root : haara
lexical category : verb
gender : masculine/feminine
number : singular/plural
person : first/second/third
tam : 0]
[root : haara
lexical category : verbal_noun_2
gender : feminine
number : singular
person ¢ third

case : direct/obliquel

24CHAPTER 2. LANGUAGE STRUCTURE AND LANGUAGE ANALYZER

2.2.2 Local Word Grouper (LWG)

The function of this block is to form the word groups on the basis of the
‘local information’ (i.e information based on adjacent words).
An example illustrates the job done by the LWG. In the sentence:

laDake adhyaapaka ko haara pahanaa rahe heiM.
boys teacher -ko garland garland -ing
(Boys are garlanding the teacher.)

the output corresponding to the word ‘adhyaapaka’ and ‘ko’ from the mor-
phological analysis block will be grouped as one unit by the LWG; similarly,
‘pahanaa’, ‘rahe’ and ‘heiM’ will also form a single unit.

The final output for the word groups below from the LWG will appear
as

word groups actual output

[1aDake] ---> [noun-group-1 : laDakaa
noun-group-1-gender : masculine
noun-group—1-number : plural
noun-group-1-person : third
noun-group-1-parsarg: 0]

(Note that the oblique option of the word ‘laDake’ has been rejected, be-
cause there is no post-position or parsarg following ‘laDake’.)

[adhyaapaka ko] --> [noun-group-2 : adhyaapaka
noun-group-2-gender : masculine
noun-group-2-number : singular
noun-group-2-person : third
noun-group-2-parsarg: ko]

[haara] -—> [noun-group-3 : haara
noun-group-3-gender : masculine
noun-group-3-number : singular
noun-group-3-person : third
noun-group-3-parsarg: 0]

[pahanaa rahe heiM]-> [verb-root : pahanaa
verb-form : O-rahaa-hei
verb-gender : masculine
verb-number : plural
verb-person ¢ third
verb-agreement : karta]

Only those groupings are done by LWG, however, which will need no
revision later on. This implies that whenever there is a possibility of more
than one grouping for some word, they will not be grouped together by the
LWG. For example, because of the two readings of the word ‘para’ one as
parsarg or postposition and the other as a noun, it will not be grouped with
‘mora’ in either of the sentences below:

2.3. REQUIREMENTS OF COMPUTATIONAL GRAMMARS 25

mora para pheilaakara naaca rahaa hei.
peacock feathers having-spread dance -ing is
(Having spread its feathers, the peacock is dancing.)

tiira mora para calaanaa aparaadha hei.
arrow peacock -on fire crime is
(It is a crime to give an arrow on the peacock.)

This block has been introduced to reduce the load on the core parser
resulting in increased efficiency and simplicity of the overall system.

2.2.3 Core Parser

The function of the core parser is to accept the local word groups produced
by LWG, and produce the parse structure. The parse structure produced
by it is shown at the beginning of this section. Mainly, it identifies karaka
relations between the verbs and the nouns.

The core parser makes use of the ideas of ‘aakaankshaa and yogyataa
> (demand and merit) from Paninian Grammar. Some words (or word
groups) make demands and others satisfy them. For example, verbs (or verb
groups) make demands for their karakas, and typically the nouns (or noun
groups) satisfy them. However, only certain nouns that have the desired
parsarg and semantic properties are eligilble. This is called yogyataa or
merit of the nouns.

Besides the above, there is another important notion: ‘sannidhi’ or near-
ness. This specifies the relations between two constituents when they are
close to each other in the sentence.

Aakaankshaa, yogyataa and sanniddhi from PG have been used in build-
ing a fast parser which will be described in Chap. 6.

2.3 Requirements of Computational Gram-
mars

To appreciate the properties required of computational grammars, it is im-
portant to first understand the needs of natural language processing (NLP)
systems which have been built for diverse applications. For example, the
applications pertain to retrieving data in response to a user request in nat-
ural language, answering questions pertaining to a domain of expertise,
following instructions in natural language, machine translation from one
natural language to another, and so on. An NLP system must do one or
both of two tasks: it must analyze the given natural language utterance, or
generate natural language text from the given content.

26CHAPTER 2. LANGUAGE STRUCTURE AND LANGUAGE ANALYZER

An NLP system consists of a grammar and ggprocedural components.
The grammar is used by the procedural components in performing analysis,
generation, etc. For example, a question-answering system would consist
of a set of programs (procedural component) and a grammar for the lan-
guage concerned. The programs would analyze a given question using the
grammar and represent the meaning appropriately. A reasoning compo-
nent produces a representation of the answer. Finally, another part of the
procedural component plans what is to be said and then uses the grammar
in generating a response in a natural language.

2.3.1 Computational Aspect

This places a new requirement on the grammar, namely, that it should be
suitable for processing by the procedural component. An important crite-
rion for judging suitability is how efficiently it can be used in processing. A
grammar formalism would be considered superior to another if grammars
written in it can be used for processing faster or with lesser computing re-
sources etc. Grammar formalisms that have been designed with processing
in mind are called computational grammar formalisms or computational
grammar models. A grammar written in such a model will be called a
computational grammar.

2.3.2 Systems Aspect

System building has its own requirements, which affect among other things,
the theory used in building them. First, a working system requires complete
detail, nothing can be waived or wished away. This serves to test the
theory thoroughly because difficult problems sometimes relegated to details
confront us when we try to build a system. Some examples of such details
often left unspecified in linguistic theories are choice of features, a detailed
lexicon, and world knowledge.

A system forces us to deal with problems which might have been set
aside by the field to be dealt with later. For example, a system for question
answering will have to deal with pragmatics; it cannot choose to deal with
syntax or semantics only. Similarly, such a system may be forced to deal
with sentence as well as discourse. Crossing the level boundaries and deal-
ing with hitherto ignored problems produces new ways of segmenting the
problem. At times, it produces ad hoc solutions. They are all precursors
to a new theory.

On the other hand, there are occasions when a well-developed theory
is bypassed in a system because the phenomenon being explained by the
theory is not of much interest. For example, most machine translation
systems adopt a simple model for morphology for reasons of fast processing

2.3. REQUIREMENTS OF COMPUTATIONAL GRAMMARS 27

and because derivation of words from morphemes is not very important.

The 80-20 rule also comes into the picture when one tries to have a
“reasonable” grammar for a system. This rule states that 20 percent of
the grammar covers 80 percent of the language. When one starts with
a grammar for 80 percent language and tries to cover the remaining 20
percent of language, a several fold increase in grammar size takes place.
This happens with the best of theories. It is a reminder that the world is
not as ordered as the theories would like it to be.

2.3.3 Large System Aspect

When the system being built is large and complex, as most NLP systems
are, it has implications for theory as well as methodology.

Modularity is a desirable property of large systems. It implies that
the system can be divided into several parts in such a manner that the
interaction between parts is minimal and clearly specified. This is very
important, for example, when large numbers of people have to work as a
team in developing the system. The implication for the grammar model is
that it should be such that several people can work cooperatively in writing
a grammar using the model (or framework).

Extensibility is one of the most important desirable properties of a large
system. It means that the system can be extended or changed bit by bit.
There are two reasons for this. First, a large real-life system has to keep
changing to satisfy changing requirements. It will soon become useless if the
system cannot be modified. Second, and more importantly, large systems
are not built as finished systems in one shot. They are built in stages from
simple to complex. Such a phased construction is possible only if the system
built in each phase is extensible.

Extensibility applied to grammars means that when the lexicon is aug-
mented or a new language phenomenon is sought to be covered, it does not
lead to extensive rewriting of the grammar.

A system will invariably be faced with situations in which it will fail to
perform the tasks it has been designed for. Dealing with failures, therefore,
must be part of system design. There are several aspects to this problem.
When a system detects that it cannot deal with the natural language related
task, it must communicate it to the user. The user can then rephrase his
request in another manner which the system might be able to handle. Such
communication also serves to educate the user about the limitations of
the system, so that in future, he might learn to avoid them. The latter
implies that for the system to appear friendly, it might be better to avoid
handling those natural language phenomena for which there are no adequate
solutions. Otherwise it will be difficult for the user to keep track of the
limitations.

28CHAPTER 2. LANGUAGE STRUCTURE AND LANGUAGE ANALYZER

The system must also provide sufficient feedback to the system design-
ers (which includes the grammar writers) regarding its failures. It can help
them detect problems in their design (in procedures or grammars) and thus
help fix them (or debug them), if possible. Experience with building large
systems indicates that debugging is an important activity both while build-
ing the system and after it starts getting used. This implies for grammar
and grammar writing, that the grammar should be so designed that errors
and problems can be identified easily. Specialized programming tools are
usually necessary to assist in debugging.

Graceful degradation is another desirable property of large systems.
When the user requests tasks that approach the limits of the capabili-
ties of the system, the deterioration in system response should be slow. In
other words, when a request is given that the system cannot handle prop-
erly, it must still respond with partial information; and when more difficult
requests are made, the answer gets progressively worse.

Finally, the system should be tolerant of user errors. In the case of
natural languge interfaces (where natural language is being used to facilitate
communication with the computer), such errors might pertain to spellings,
sentence constructions, agreement rules, etc. Correction by the system
should be implicit without prompting it to the user. Other kinds of errors
pertaining to misconceptions ought to be detected and corrected explicitly.

Further Reading

Requirements of computational grammar in Sec. 2.3 are based on
Bharati et al. (1992a).

Exercises

2.1 Show the modifier-modified structure for the sentences in Hindi given
below. In case of ambiguity show the structures for all the different senses.

1. bacce ne apanii kitaaba paDhii.
child ne self book read
(The child read his/her book.)

2. bacce ko usakii kitaaba paDhanii paDii.
child dat. his book read had-to
(The child had to read his book.)

3. bhaarata kii janataa ne narasiMharaava ko
India gen. people -ne NarsimhaRao acc. %v2 }

pradhaanamaMtrii cunaa.
prime-minister elected

2.3.

10.

11.

12.

13.

14.

REQUIREMENTS OF COMPUTATIONAL GRAMMARS

(The people of India elected NarasimhaRao
as the prime minister.)

shyaama ko hari kii baatoM para hazsii aa rahii thii.
Shyam dat. Hari gen. talk -par laugh coming
(Shyam felt like laughing at Hari’s talk.)

. mohana shyaama ko buddhimaana maanataa hei.

Mohan Shyam dat. intelligent considers
(Mohan considers Shyam to be intelligent.)

adhyaapaka ne vidyaarthii ko apaniii pustaka
teacher -ne student acc. self book

paDhane ke 1liye kahaa.
to-read asked
(The teacher asked the student to read his book.)

. raama ne shyaama ko apanii kitaaba dii.

Ram -ne Shyam acc. self book gave
(Ram gave his book to Shyam.)

. daravaajaa khulane se ThaMDa laga rahii hei.

door to open -se cold feeling
(I am feeling cold because of the opening of the door.)

. yaha taalaa aasaanii se mnahiM khulegaa.

this lock ease with not will open
(This lock will not open easly.)

kisa bacce ne kitaaba kaa pannaa phaaDaa thaa.
which child -ne book gen. page did -tear
(Which child tore the page of the book.)

raama ne mohana ko kitaaba paDhane ke liye kahaa.
ram -ne mohan acc. book to-read asked
(Ram asked Mohan to read the book.)

raama ko ThaMda laga rahii hei.
Ram dat. cold is-feeling
(Ram is feeling cold.)

mohana ko yaha kitaaba inaama meM milii.
Mohan dat. this book prize -mein received

(Mohan receive this book as a prize.)

tumane bhii likhaa hei kucha.

29

30CHAPTER 2. LANGUAGE STRUCTURE AND LANGUAGE ANALYZER

you-ne also have-written something
(You have aslo written something.) (marked sentence)

156. aaja ciTThiyaaz aaii heiM kuch.
today letters have-come some
(Some letters have come today.) (marked sentence) %v2 }

16. kaanapura ina dinoM bahuta ThaMDa hei.
Kanpur these days very cold
(These days kanpur is very cold.)

17. baccaa douDakara ghara jaanaa caahataa hei.
child running home go wants
(The child wants to go home running.)

18. mohana ko siradarda ho rahaa hei.
Mohan dat. headache occurring
(Mohan has a headache.)

19. mohana ke peTa meM darda hei.
Mohan gen. stomach -meM pain is %v2 }
(Mohan has stomachache.)

20. mohana ne Shyaama se kahaa ki miThaaii khaanaa
Mohan -ne shyam dat. said that sweet to-eat

acchii baata hei.

good thing is

(Mohana told Shyam that eating sweets is a
good thing.)

2.2 Identify modifier-modified relation and the nature of modification
among constituents in each of the following sentences:

1. raama paanii piikara ghara gayaa
ram water having-drunk home went
(Ram went home having-drunk water)

2. raama ne phala kaaTane ke liye churii maazgii
ram -ne fruit to-cut -ke-liye knife asked
(Ram asked for a knife to cut the fruit)

2.3 Identify modifier-modified relation and the nature of modification
among constituents in each of the following sentences:

1. Ram said that Mohan is crying in the room.
2. Ram persuaded Mohan to go to the market.

2.3. REQUIREMENTS OF COMPUTATIONAL GRAMMARS 31

2.4 Show the modifier-modified structure for the dominant sense of the
following sentences in Hindi. Alternatively, you may translate the Hindi
sentence to your mother tongue and show its structure.

1. 1laDake ne phuula dekhaa.
boy erga. flower saw
(The boy saw a flower)

2. laDake ne jo phuula dekhaa, vaha baaga meM
boy erga. which flower saw that garden in

ugaa huaa thaa.
growing was
(The flower that the boy saw was growing in the garden)

3. 1laDake ne phuula jisa baaga meM dekhaa, vaha peDoM
boy erga. flower which garden in saw, that trees %v2 }

se bharaa thaa.

with filled

(The garden in which the boy saw the flower was filled
with trees.)

2.5 Show the modifier-modified structure for the isolated sentences in En-
glish translated to your mother tongue given below (In case of ambiguity,
show for the dominant sense.):

1. The boy plucked the flower quickly.
2. The boy plucked a red flower at 5.
3. The boy plucked the flower which was growing
in the garden.
4. The boy plucked the flower growing in the garden

5. The boy plucked the flower running in the garden.

6. The boy plucked the flower which was against the
rules.

7. The boy who plucked the flower was walking in the
garden.

8. The flower that was plucked was growing wild.

2.6 Write a grammar for time expressions in your language such as: five
o’clock, before five o’clock, half past three, soon after the eruption, one
minute earlier than the firing, three days later, tomorrow, day after tomor-
row, two days and three hours after the fire, after the second explosion,
etc.

32CHAPTER 2. LANGUAGE STRUCTURE AND LANGUAGE ANALYZER

Chapter 3

Words and Their Analyzer

3.1 Introduction

We define a word to be a sequence of characters delimited by spaces, punc-
tuation marks, etc. in case of the written text. There is no difficulty in
identifying words in the written text entered into the computer because one
simply has to look for the delimiters.

A word can be of two types: simple and compound. A simple word!
consists of a root or stem together with suffixes or prefixes. A compound
word (also called a conjoined word) can be broken up into two or more
independent words. Each of the constituent words in a compound word is
either a compound word or a simple word and may be used independently
as a word. On the other hand, the root and the affixes, which are con-
stituents of a simple word, are not all independent words and cannot occur
as separate words in the text.

Constituents of a simple word are called morphemes or meaning units.
The overall meaning of a simple word comes from the morphemes and their
relationships. Similarly, in case of a compound word, its meaning follows
from its constituent words and their inter-relationships.

It should be noted that we have taken a pragmatic position regarding
words. Anything that is identifiable using the delimiters is a word. This is
a convenient position to take from the processing viewpoint. Similar is the
case with the definition of compound words.?

LA simple word is what is usually called the word.

2Tt should be noted that linguists have paid a great amount of attention to the
concept of word. They have tried to address the twin issues of: how it is pronounced,
and how it gets its meaning. The units of pronunciation are the phonemes, while the
units of meaning are morphemes. For the latter, they have tried to explore various
issues as illustrated by the following examples: Is “cannot” a separate word? What is its
relationship to “Can’t”? Clearly both of them share meaning with “can not”; however,

33

34 CHAPTER 3. WORDS AND THEIR ANALYZER

With the above definition, an analyzer of words in a sentence does not
have to do much work in identifying a word: it simply has to look for the
delimiters.®> Having identified the word, it must determine whether it is a
compound word or simple word. If it is a compound word, it must first
break it up into its constituent simple words before proceeding to analyze
them. We call the former as Sandhi analyzer and the latter as morphological
analyzer, both of which are important parts of a word analyzer.

The detailed linguistic analysis of a word can be useful for NLP. How-
ever, most NLP researchers have concentrated on other aspects, e.g., gram-
matical analysis, semantic interpretation, etc. As a result, NLP systems
use rather simple morphological analyzers. Consequently, our discussion
too would be limited to rather simple kinds of morphological analyzers.

So far we have talked about analyzers. A generator does the reverse
of an analyzer. Given a root and its features (or affixes), a morphological
generator generates a word. Similarly, a sandhi generator can take the out-
put of a morphological generator, and group simple words into compound
words, where possible.

3.2 Why Morphological Analysis

The first question we need to address is why we need to perform morpho-
logical analysis at all. If we had an exhaustive lexicon which listed all the
word forms of all the roots, and along with each word form it listed its fea-
tures values then clearly we do not need a morphological analyzer. Given a
word, all we need to do is to look it up in the lexicon and retrieve its feature
values. For example, suppose an exhaustive lexicon for Hindi contains the
following entries related to the roots laDakaa and kapaDaa:

words can intervene now as in “can certainly not”. The position adopted in NLP is not
opposed to the linguistic position. NLP has simply taken a short cut. It is not opposed
to taking or benefiting from the linguistic analysis in the long run.

3Tt does not have to decide whether “can’t” is a word, for example. If it can occur in
a sentence separated by spaces, it is a word and must be analyzed.

3.2. WHY MORPHOLOGICAL ANALYSIS 35

Word Cate- Root Gender Number Per- Case
form gory son

laDakaa noun laDakaa masc. Sg. 3rd direct
laDake do. do. do. pl do. do.
laDake do. do. do. Sg. do. oblique
laDakoM do. do. do. pl- do. do.
laDaka- do. laDaka do. Sg. do. any
pana pana

kapaDaa noun kapaDaa masc. sg. 3rd direct
kapaDe do. do. do. pl. do. do.
kapaDe do. do. do. Sg. do. oblique
kapaDoM do. do. do. pl. do. do.
kapaDaa- do. kapaDaa do. sg. do. any
pana pana

Now, given a word, it can be looked up and its feature values returned.

The above method has several problems. First, it is extremely wasteful
of memory space. Every form of the word is listed which contributes to the
large number of entries in such a lexicon. Even when two roots follow the
same rule, the present system stores the same information redundantly.

Second, it does not show relationships among different roots that have
similar word forms. Thus, it fails to represent a linguistic generalization.
This is necessary if the system is to have the capability of understanding
(even guessing) an unknown word. (In fact, human beings routinely deal
with word forms they have never heard before when they know the root and
the affixes separately.) In the generation process, the linguistic knowledge
can be used if the system needs to coin a new word.

Third, some languages have a rich and productive morphology. The
number of word forms might well be infinite in such a case. Clearly, the
above method cannot deal with such languages.

Morphological analysis with different degrees of sophistication can be
carried out. As discussed in the last section, most NLP systems use simple
linguistic theories for morphological analysis. The scheme we will describe
focuses on the first issue (space requirement). It can deal with the sec-
ond issue partially. However, when the morphology becomes rich (issue 3
above), the scheme will not be able to handle it.

There is another criterion by which to judge a morphological analyzer
or a scheme for morphological analysis. This is the speed with which it
performs the analysis. In case of the exhaustive lexicon, the time spent in
analysis is zero, the only time needed is in searching and retrieving a word
from the lexicon. As the analysis scheme becomes more sophisticated, it
is also likely to take more time. A proper balance may, therefore, have
to be struck. The schemes popular in NLP have chosen speed over the

36 CHAPTER 3. WORDS AND THEIR ANALYZER

requirements of dealing with unknown words etc.?

Case
Number direct oblique
Singular laDakaa laDake
Plural laDake laDakoM

Vocative case has not been shown to keep the example simple.

Figure 3.1: Word forms for the root laDakaa

Case
Number Direct Oblique
Singular (0, ¢) (1,e)
Plural (1,e) (1, oM)

Each entry in the table shows the number of characters to
be deleted from the root and the string to be suffixed.

Figure 3.2: Paradigm table for ‘laDakaa’ class

3.3 Morphological Generation Using Paradigms

The scheme we will describe now is based on paradigms. This or a variant
of this scheme has been used widely in NLP.

The linguist or the language expert is asked to provide different tables of
word forms covering the words in a language. Each word-forms table covers
a set of roots which means that the roots follow the pattern (or paradigm)
implicit in the table for generating their word forms. For example, in Hindi
the paradigm for laDakaa and other roots in its class can be specified by
giving its word forms.’ Other roots such as ‘kapaDaa’ (cloth) behave like
laDakaa and belong to the same paradigm.

The paradigm can be extracted from the word forms of laDakaa by
identifying the number of characters to be deleted from the root and the

41t is possible to build a system that uses a fast and simple scheme for normal oper-
ation, and a complex and powerful scheme in case the simpler scheme fails or the word
is not found.

5Note that oblique or direct case refers to the fact whether the word must or must
not be followed by the post positional marker. laDakoM, for example, is oblique case
because it must be followed by a postpositional marker such as ‘ne’, ‘ko’, etc.

3.3. MORPHOLOGICAL GENERATION USING PARADIGMS 37

characters to be added to obtain the word forms. For example, by look-
ing at Figure 3.1 we can say that if you want plural, oblique case of the
root laDakaa, delete the last character (‘aa’) and add (‘oM’) at the end,
where ‘aa’ is a single character in Devanagri script and in the internal rep-
resentation in the computer (which is ‘ladakA’ as given in the notation in
Appendix B, Table 2):

[root = laDakaa, number = plural, case = oblique] — laDakoM

This can be expressed in the form of a table (Figure 3.2) and the reader
can verify by looking at Figure 3.1 that it is correct:

Algorithm 3.1 Forming paradigm table

Purpose: To form paradigm table from word forms table for a root
Input: Root r, Word forms table WFT (with labels for rows and coloumns)
Output: Paradigm table PT

Algorithm:

1. Create an empty table PT of the same dimensionality, size and
labels as the word forms table WE'T.

2. For every entry w in WFT, do

ifw=r
then store “(0,4)” in the corresponding position in PT.
else begin

let i be the position of the first characters in w and r which
are different

store (size(r) - i + 1, suffix(i,w)) at the corresponding po-
sition in PT

3. Return PT

End algorithm

Along with the roots can be stored the types and other grammatical
information that is common to all the associated endings (that is, word
forms). Figure 3.3 shows some example roots together with common gender
information.

Note that the endings of type (n,JaDakaa) are applicable to laDakaa as
well as kapaDaa (cloth), ghoDaa (horse), etc. Similar is the case with roTii
(bread), laDakii (girl), lakaDii (wood), etc. The paradigm table can be

38 CHAPTER 3. WORDS AND THEIR ANALYZER

Root Type Gender
laDakaa (n,JaDakaa)
kapaDaa (n,JaDakaa)
bhaaSaa (n,bhaaSaa)
roTii (n,laDakii)
laDakii (n,laDakii)

Figure 3.3: Dictionary of roots

used with any of the roots in the same class to generate its word forms. For
example, kapaDoM can be generated from root kapaDaa, number plural,
and case oblique, by deletion and addition as specified by the paradigm
table. See Algorithm 3.2.

This leads to efficient storage because there is only one paradigm table
for a class of roots rather than a separate word forms table for each root.

Algorithm 3.2 Generating a word form
Purpose: To generate a word form given a root and desired feature values
Input: Root r, Feature values FV

Uses : Paradigm tables, Dictionary of roots DR, Dictionary of indeclinable
words DI

Output: Word w
Algorithm:
1. If root r belongs to DI
then return (word stored in DI for r irrespective of FV)
. let p = paradigm type of r as obtained from DR,
. let PT = paradigm table for p.

2
3
4. let (n,s) = entry in PT for feature values FV
5. w := r minus n characters at the end

6

. w := w plus suffix s
End algorithm

Note that the roots in the dictionary of roots should be kept sorted.
This allows us to obtain the entry for a root (step 2 in Algorithm 3.2) very
rapidly. Our own intuition tells us that searching for an item in a sorted
list is much faster. We have all experienced that searching for a word in a

3.4. MORPHOLOGICAL ANALYSIS USING PARADIGMS 39

dictionary is very rapid because the words are sorted. What would happen
if the words were not sorted in a dictionary!®.

We have so far talked of generating a word using paradigms. In fact,
the word form table given by the language expert is from the point of view
of generation. It is set up so that given a root and the desired features,
one can locate the right table and then look up the right entry. It is not
surprising, therefore, that the paradigm table is also set up for generation.

3.4 Morphological Analysis Using Paradigms

The important question is how the paradigms (which are specified for gen-
eration) can be used for analysis. Analysis and generation are the inverse
of each other. Human experts find it easier to specify solution to the gen-
eration problem. It is the task of the computational linguist (one whose
primary background is in computer science) to solve the indirect or the
inverse problem. Solution of the indirect problem requires some amount of
search.

There are other instances of similar inverse problem in other domains.
Humans find it easier to specify solution to one of the problems, call it
the direct problem. For example, how to multiply two integers is a direct
problem whose solution is neatly provided. The indirect problem, namely
division, between two integers, requires some amount of search, using mul-
tiplication (the solution to the direct problem). A moment’s thought would
reveal that the most commonly used division algorithm for decimal num-
bers, actually involves a trial and error (search) at each step, to obtain a
single digit which is part of the answer.” Other examples of inverse problem
pairs are tying a knot and untying it, climbing a ladder up and climbing
down, differentiation and integration, encryption and decryption, etc.

Let us now outline a method based on search of paradigm tables for
doing morphological analysis. Suppose for example, we are given kapaDoM
and are asked to find its root and feature values. Assume further that we
have only two paradigm tables for laDakaa paradigm and bhaaSaa paradigm
(Figure 3.4). The first step is to see whether kapaDoM occurs as an indeclin-
able word. This check would be performed on a dictionary of indeclinable
words, which should be available separately.

The next step is to check all the entries in all the paradigm tables having
the last character ‘M’ in the suffix. There happens to be none.

The next step is to check all the entries in all the tables that have ‘oM’
as the suffix string. There turn out to be two entries. They are:

6The technical name given to a rapid method of searching for an item in a sorted list
is binary search.

"The search step involves multiplying the divisor by a single digit to find the largest
such digit without exceeding the appropriately sized leftmost part of the dividend.

40 CHAPTER 3. WORDS AND THEIR ANALYZER

Word forms table for bhaaSaa

Case
Number direct oblique
Singular bhaaSaa bhaaSaa
Plural bhaaSaaeM bhaaSaaoM

Paradigm table for bhaaSaa

Case
Number direct oblique
Singular (0, ¢) 0, ¢)
Plural (0, eM) (0, oM)

Figure 3.4: Word forms and paradigm table for bhaaSaa

In laDakaa paradigm table : (1, oM)
In bhaaSaa paradigm table : (0, oM)

For each of the entries, add as many characters as are shown from
the root of the paradigm table. We get two roots kapaDaa and kapaD
respectively. These can now be checked in the dictionary of roots (Figure
3.3). The former occurs in the dictionary. It is now checked whether it has
the same paradigm in whose table its suffix has matched. As the check turns
out to be true, kapaDaa is identified as the root. Grammatical features
associated with ‘kapaDaa’ in the dictionary of roots and with suffix ‘oM’
in the paradigm table together constitute an answer (or a lexical entry)
for ‘kapaDoM’. The system continues searching for additional suffixes such
as ‘oM’, ‘adoM’ etc. In case additional answers are found (none in this
example) they would also be returned. Figure 3.5 shows inputs and outputs
to morphological analyzer. Algorithm 3.3 gives the exact procedure.

Algorithm 3.3 Morphological analysis using paradigm tables.
Purpose To identify root and grammatical features of a given word.
Input A word w

Output A set of lexical entries L (where each lexical entry stands for a
root and its grammatical features)

Uses Paradigm tables, Dictionary of roots DR, Dictionary of indeclinable
words DI.

3.4. MORPHOLOGICAL ANALYSIS USING PARADIGMS 41

- word
Paradigm

tables

dictionary »| morphological
or roots analyzer
dictionary

of indeclinable lexical entries
words

(or answers)

Figure 3.5: Morphological analyzer input-output

Algorithm

1. L := empty set
2. If w is in DI with entry b then add b to L.
3. for i := 0 to length of w do

let s = suffix of length i in w
for each paradigm table P
for each entry b (consisting of a pair) in P do
if s = suffix in entry b then
begin
e r = root of paradigm table P

e j = number of characters to be deleted as shown in
b

e proposed-root = (w - suffix s) + suffix of r consisting
of j characters

e If (proposed-root is in DR) and (the root has paradigm
P)
then construct a lexical entry 1 by combining (a)
features given in DR with the proposed-root, and
(b) features associated with e.

e Add1ltoset L
end of begin
end for every entry in P
end for every paradigm

42 CHAPTER 3. WORDS AND THEIR ANALYZER

end for every i

4. If L is empty
then return “unknown word w”
else return (L)

End algorithm

3.5 Speeding Up Morphological Analysis by
Compilation*

The method outlined in Algorithm 3.3 for morphological analysis is quite
expensive in time. Each entry in every paradigm table is scanned and
compared with every possible suffix for a given word. This search can take
a long time. It turns out that the search can be speeded up enormously
by analyzing the paradigm tables and the information contained therein
beforehand, and generating another table or data structure suitable for this
search. This process is called compilation. Once the new data structure
is generated, it is used by the morphological analyzer, and the paradigm
tables are no longer needed. (See Figure 3.6). For the compilation process
for a language to start, all the paradigm tables must be available for the
language.

The data structure we shall describe now is based on the sorted list of
suffixes from the paradigm tables (call it sorted reverse suffix table). The
compiler takes all the entries from all the paradigm tables, and rearranges
them after sorting on the reverse of suffixes. Thus, the table in Figure 3.7
would be generated if we had only two paradigm tables for laDakaa and
bhaaSaa in our language.

Once the table in Figure 3.7 is generated, the original paradigm tables
(of Figure 3.4) are no longer needed. The two tables have exactly the same
information. What is different is their organization which is responsible
for the speed up. The key idea used here is that the suffixes are ordered.
Therefore, given a suffix of a given word, it can be located very quickly
without scanning all entries in all the paradigm tables.

It is the same saving in time one obtains in searching for a word in
a human-readable dictionary when the entries are in alphabetical order
versus in arbitrary order. Algorithm 3.4 gives the exact details, it should
be compared with Algorithm 3.3 by the reader.

Algorithm 3.4 Morphological analysis using sorted reverse suffix table.
(Compare with Algorithm 3.3)

7* This section requires a greater background of computer science and may be op-
tionally skipped.

3.5. SPEEDING UP MORPHOLOGICAL ANALYSIS BY COMPILATION*43

Word forms tables
Roots l

'

Paradigm
Table Word
Generator l
l Dictionary Morphological
Paradigm tables of Toots analyzer
l Dictionary
of indecli-

nable words

Compiler] .
Lexical entries

l (b)

New data structure D
(a)

Figure 3.6: (a) Compilation of paradigms; (b) Morphological analysis

Reverse Character Grammatical features (num- Ezample word
suffiz string to ber, case, paradigm type) (for the
be appended to reader not for

the prefiz the machine)
1) 1) s,d, laDakaa class laDakaa
¢ ¢ s,d, bhaaSaa bhaaSaa
¢ ¢ s,0, bhaaSaa bhaaSaa se
e A s,0, laDakaa laDake se
e A p,d, laDakaa laDake
Me ¢ p,d, bhaaSaa bhaaSaaeM
Mo A p,0, laDakaa laDakoM se
Mo ¢ p,0, bhaaSaa bhaaSaaoM se

Figure 3.7: Sorted reverse suffix table

44 CHAPTER 3. WORDS AND THEIR ANALYZER

Purpose To identify root and grammatical features of a given word.
Input A word w

Output A set of lexical entries L (where each lexical entry stands for a
root and grammatical features)

Uses Sorted reverse suffix table RST, Dictionary of roots DR, Dictionary
of indeclinable words DI.

Algorithm

1. L := empty set;
2. If w is in DI with entry b
then add b to set L.
3. for i := 0 to length of w do
let S = suffix of length i in w
if reverse(s) is in RST
then for each entry b associated with reverse(s) in RST do
begin
proposed-root = (w - suffix s) + string to be added from
root

if (proposed-root is in dictionary of roots) and (the root
has paradigm type P in b)

then

e construct a lexical entry 1 by combining (a) features
given for the proposed root in DR, and (b) features
associated with b.

e addltoL
end of begin for each entry

end for i

4. f L is empty then return (“unknown word w”) else return (L)

End algorithm

3.6 Morphological Analyzer — Some Additional
Issues™

7* This section requires a greater background of computer science and may be op-
tionally skipped.

3.6. MORPHOLOGICAL ANALYZER - SOME ADDITIONAL ISSUES*45

There are alternatives to the sorted reverse suffix table data structure. A
major alternative is the use of tries. Tries are trees in which keys are stored
in the path starting from root node, and not in the nodes themselves. For
example, Figure 3.8 shows tree and trie structures for the reverse suffixes
for laDakaa and bhaaSaa paradigms from Figure 3.7. For the four different

VANVAN
/N,

(a) (b)

Figure 3.8: (a) Ordered binary tree and (b) Trie structures

suffixes there are four nodes in the binary tree (in Figure 3.8 (a)), that is,
one each for a distinct suffix.®

In the trie shown in Figure 3.8(b), all possible paths starting from the
root node are ¢, ge, oM, ¢Me, ¢Mo.? Of these, only four marked by
‘#’ stand for suffixes. Information regarding paradigm class, grammatical
features, etc. (same as in Figure 3.7) can be associated with ‘#’ or the
suffixes in the trie.

Tries permit rapid matching of partial suffixes. For example, if ‘laDakoM’
word is to be analyzed, one can begin backwards from the word, matching
character by character in the trie. Each time a ‘#’ mark is encountered, it
is a valid suffix for some root. At each such point, a root is to be proposed
and checked in the dictionary of roots.

8 As shown in Figure 3.8(a), an ordered binary tree has the property that all the nodes
in the left sub tree of the root node have keys (suffixes) that occur alphabetically before
the key in the root. (For example, ¢ and e occur before Me). Similarly all keys in the
nodes in the right sub-tree of the root node occur alphabetically after the key in the
root. (For example, Mo occurs after Me.) This property holds for roots of the subtrees
and so on.

9¢ is the empty string which prefixed or suffixed with any other character or string
leaves it unchanged. Thus, ‘¢e’ is same as ‘e’.

46 CHAPTER 3. WORDS AND THEIR ANALYZER

A number of variations on tries are possible. One can build tries from
left to right rather than backwards. In such a case, the roots would be in
the trie. Suffixes corresponding to each paradigm class would be stored in a
separate trie, which would be linked to all the roots belonging to the same
paradigm class (see Sangal (1991) for details).

The most important factor determining what choice to make is the
availability of main memory. Tries do not work well on secondary storage
such as disks. If very large amount of main memory is available (say, tens
of megabytes) the prefix tries can be used. On the other hand, if main
memory available is limited (say, tens to hundreds of kilobytes) the reverse
suffix tries can be kept in main memory while the dictionary of roots can
be stored on the disk.

For a language such as Hindi which has a simple morphology, a few tens
of kilobytes are sufficient for storing the reverse suffix tries. For a South
Indian language such as Telugu, a few hundred kilobytes might be needed.
A dictionary of roots for even a medium sized dictionary (say, 30000 roots)
is likely to occupy a few megabytes.

Finally, if the main memory available is very small (say, a few kilobytes)
both the suffixes and the dictionary of roots have to be stored on the disk.
In such a case, it might be preferable to use sorted reverse suffix table over
tries.

Indexes can also be built for sorted files on disk, in particular, for dictio-
nary of roots, sorted reverse suffix table, dictionary of indeclinable words,
etc. An index speeds up search of sorted files. Also suitable are dynamic
data structures over disk, such as B-trees.!! Since indexes are much smaller
than the files containing actual data, they can be loaded and kept in main
memory. It should be mentioned that not much work has been done on
storing tries on disk.

Finally, there is the issue of how often are new paradigms added. We
should recall that paradigms can be compiled only if all the paradigms
for a language are available together. This means that having compiled the
paradigms, if we come across a new paradigm (say, when the morphological
analyzer is in use), there is no easy way to add a new paradigm. It would
require a recompilation and regeneration of the data structure (say, trie,
sorted table), before the system would start recognizing and using the new
paradigm.!2

10

10Small amount of memory may be available either because the computer has a small
amount of physical memory or because another application can spare only a small amount
of memory for morphological analysis. An example of the latter would be an editor or
a word processor which can spare only a small amount of memory for morphological
analyzer which is part of a spelling checker.

11 B-trees are different from ordered binary trees.

12Normally, a (re)compilation takes a large amount of time (a few minutes to a few
hours depending on the language) when compared to morphological analysis (a fraction

3.6. MORPHOLOGICAL ANALYZER - SOME ADDITIONAL ISSUES*47

Thus, there is a need for developing programs for incremental compi-
lation. Such programs can take an additional paradigm and an existing
data structure, and incrementally change the data structure without hav-
ing to recompile everything. It should be clarified that an unknown word
but belonging to an existing paradigm does not pose a major problem. It
can be added to the dictionary of roots, and a recompilation (of suffixes)
is not needed. In any case, it is hoped that once exhaustive paradigms are
available, there will seldom be a need to add new paradigms. The issue of
recompilation would then cease to be of importance.

Further Reading

Tree data structures and sorted arrays are described in a large number
of texts in computer science. See for example, any of the following texts:
Horowitz and Sahni (1978), Reingold and Reingold (1989), or Wirth (1973).
Knuth (1973) is an encyclopaedic work. Sorted files, B-trees and indexes
are described in books on databases. See a textbook such as Ullman (1987)
or Date (1987). Wiederhold (1982) goes into elaborate detail analyzing seek
and latency times for disk access. Work on signatures not discussed here
also has importance in further speeding up access. See Knuth (1973) for a
description of signatures.

Exercises

3.1 Choose five different nouns in your mother tongue. By considering
their different forms, identify the parameters (such as gender, number etc.)
on which the forms depend. Now build a table of word forms for each of
the nouns.

3.2 For one of the tables in Exercise 3.1 create a paradigm table using
paper and pencil.

3.3 Repeat Exercise 3.1 but for five verbs instead of five nouns.

3.4 How many different forms (such as ghuumataa, ghuumanaa) do verbs
in your language take? For each of the forms identify the gender, person,
tense etc.

3.5 Comment on the suitability of the scheme described in this chapter
for verbs in your language. Can you propose a better alternative?

3.6 Do a comparative study of efficiency of storage and processing time
between using tries and indexed sequential file.

3.7 Vowel harmony can simplify the word paradigms and reduce their
number. What would need to be done, if we want to incorporate vowel
harmony in the morphological analyzer.

of a second).

48

CHAPTER 3. WORDS AND THEIR ANALYZER

Chapter 4

Local Word Grouping

4.1 Introduction

Indian Languages have relatively free word order; still there are units which
occur in fixed order. The most important examples of these are the main
verb followed by auxiliary verb sequences and nouns followed by postposi-
tions. We term such units as verb groups and noun groups respectively. It
may be noted that verb groups and noun groups will be sub-parts of what
are normally called verb phrases and noun phrases, respectively, in English.
However, in our formulation we do not use the concepts of noun phrases
and verb phrases for the following reasons:

1. The concept of verb phrase does not seem natural for Indian lan-
guages.

2. From computational point of view, recognition of noun phrases and
verb phrases is neither simple nor efficient.

On the other hand, noun groups and verb groups can be formed using
only local (also called surface) information and more importantly they pro-
vide sufficient information! for further processing of the sentence according
to Paninian karaka theory. So the local word grouping provides all the
necessary information with minimum computational effort.

Another important point about our local verb grouping is that we do
not attempt to distinguish all the fine shades of semantics associated with
these verb sequences. Our experience with data from various Indian lan-
guages suggests that to a large extent these fine shades are conveyed by

1 This information consists of ‘prayoga’ and ‘vibhakti transformation rules’ to be dis-
cussed in Chap. 5.

49

50 CHAPTER 4. LOCAL WORD GROUPING

identical conventions among Indian languages and so for translation pur-
pose we need not disambiguate them. This approach is also consistent with
Indian grammatical analysis where meaning is extracted in several layers
with increasing precision.

The third important point is about our strategy for grammar design.
As noted by Patanjali any practical and comprehensive grammar should be
written in ‘utsarga apavaada’ approach. In this approach rules are arranged
in several layers each forming an exception to the previous layer.

4.2 Verb Groups

As described in the last section, there are typically two kinds of word groups
consisting of nouns and parsargs (or postpositions), and main verbs and
auxiliary verbs, respectively. The exact groups formed, vary from language
to language. For example, in Hindi, sequence of verbs, main and auxiliaries,
occur as separate words and hence have to be grouped together. In the
south Indian languages they occur together, conjoined into a single word;
as a result, the analysis is left to morphology rather than to the local word
grouper.

4.2.1 Kriya Rupa Charts

The kriya rupa charts specify the groups to be formed out of the sequence
of verbs which denote a single action. Take for example ‘khaa rahaa hei’ in
Hindi which consists of three verbs in a sequence, but they together denote
a single act of eating. The role of the auxiliary verb is to give information
about tense, aspect, modality etc.

To enable the machine to do the job of grouping, the following informa-
tion will be required

1. possible verbal roots in sequences
2. information about gnp agreement

Rules of gender, number, person (gnp) agreement are comparatively
complicated in Hindi. The normal case would be a verb form like ‘khaataa
rahtaa hei’;, where the gender and number of each verb coincides with the
gnp of the whole sequence. But consider the following verb sequences

1. khaatii rahatii heiM
2. paDhate rahanaa hei

In (1), the plurality of the whole sequence is reflected only in that of
the last verb whereas in (2) the plurality is independent of the individual
words (Figure 4.1).

4.2. VERB GROUPS 51

Sentence and (gender, number) of individual verbs Overall TAM and
(9,n) of verb group

1. laDakaa paDhataa rahataa hei. taa_raha_taa_hei
(m,s) (m,s) (*5s) (mys)

2. laDakiyaaM paDhatii rahatii heiM. taa_raha taa_ hei
(£s) (£s) (*p) (Ep)

3. laDakiyaaM paDhatii rahatiiM heiM. incorrect sentence
() (fp) (*p)

4. laDake ko paDhate rahanaa hei. taa_raha naa hei
(m,s) (m,s) (*s) (%%)

5. laDake ko paDhataa rahanaa hei. incorrect sentence
(m,s) (m,s) (*8)

Legend:

m = masculine, f=feminine, s=singular, p=plural
* = don’t care (no constraint on value)

Figure 4.1: Table of some verb sequences

The linguist will have to provide this information. The first task there-
fore is to describe the above information in some fixed format. Take the
three verb-forms in Hindi,

1. khaataa rahataa hei
2. khaatii rahatii heiM
3. khaate rahanaa hei
The linguistic information for (1) and (2) will be expressed as follows:

label : taa_raha_taa_hei

vg-gnp : [-2, -1, -1]

seq-agree-spec: taa [agr,agr,-] rahataa [agr,agr,-]
heil[-,agr,agr]

prayog . karta

karaka transformation rule: normal

The label field above indicates the raw TAM label (TAM stands for tense
aspect modality) for the (entire) verb group. It consists of concatenation
of the tam of the main verb, followed by the roots and raw tams of the
remaining verbs, separated by ‘.’. In the case of Hindi, the raw tam of
a verb is simply the ending of the verb. The label is unique for the verb
sequence (root of the main verb not included), and can be used for getting
the above specification out of all such specifications that might be there.

Seq-agree-spec is a specification giving the sequence of verb roots and their

52 CHAPTER 4. LOCAL WORD GROUPING

tams, and the rules of agreement. Vg-gnp gives the specification for filling
gender, number, and person of the verb group. Prayog indicates the kind
of sentence in which this sequence can occur.

In the example above, the square brackets give the specifications re-
garding gender, number, and person, respectively. Vg-gnp indicates how
the gnp of the verb group is to be arrived at from the gnp of its constituent
verbs. First number in square brackets, -2 indicates that gender of the
verb group is to be obtained from the gender of the second last verb in the
sequence, and the following -1’s indicate that number and person, respec-
tively, of the verb group take their values from the last verb (i.e., -1 when
counted backwards). seq-agree-spec shows that if the first (main) verb ends
in taa, and is followed by ‘rahataa’ and ‘hei’, the sequence is possibly gram-
matical. (Actually this information has already been used in constructing
the label and retrieving the specification.)

In the square brackets after taa (tam of the main verb), the first agr
indicates that the gender of the main verb should agree with the gender of
the verb group, the second agr indicates that the number of the main verb
should agree with the number of the verb group, and ‘-’ indicates don’t care
for person of the verb.

Normally, the agreement rules described above are followed. There is an
exception in Hindi, however. Whenever the verb group is feminine plural,
the specified agreement rules are not used. Instead, the last verb must be
plural and all else singular. The gender and person of the verb group is
still obtained using vg-gnp.

The above suggests the method or the algorithm to be followed by the
local word grouper. Given a sequence of verbs, V; to V,, , the label is formed
by taking the tam of V] and concatenating with the roots and tams of the
verbs V3 to V,, . Using the label, the specification is obtained. Vg-gnp is now
used to obtain the gnp of the verb group. If an exception condition occurs
(e.g., feminine plural in Hindi), the agreement rules associated with the
exception are tested. Otherwise, the agreement rules with the specification
(associated with the label) are applied. In case of success, the verb group
is formed and processing continues at the word after V,, . In case of failure
of agreement rules, the above process is repeated with V; to V,,_1. The
process of forming a verb group starting from V; terminates when either a
verb group is formed using more than one verb besides V1, or a verb group
consisting of single verb V; is formed. In the latter case, gnp of the verb
group is the same as that of V; . (More specialized methods can be used to
avoid forming labels and checking for those sequences which cannot possibly
occur. Such methods are being used for Hindi. For example, intermediate
verb groups contain at most two verbs; so we test for them directly. These
can again be generalized after more data is available from other Indian
languages.)

4.3. NOUN GROUPS 53

4.3 Noun Groups

Noun groups are formed out of nouns and parsargs. In Hindi, each of the
parsargs gets grouped with the preceding nouns. For example, the parsargs
in each of the lines below, get grouped with the preceding noun laDake

(boy).

laDake ne
laDake ke liye
laDake kii

For the noun to participate in the grouping, it must be in oblique form.
For example, laDake has two possible lexical entries, one corresponding to
singular-oblique and the other to plural-direct. (The oblique case for Hindi
implies that noun takes a parsarg.) Only the singular-oblique lexical entry
takes part in grouping with the parsarg. The number of the noun group is
set to singular.

The actual parsarg encountered (possibly empty) is stored in the noun
group as vibhakti. In morphologically rich languages, the noun itself gets
declined depending on its relationship with the verb. In languages less rich
in morphology, the parsarg serves a similar purpose. By incorporating both
these in the group and calling it vibhakti, we are able to deal with it in a
uniform way during core parsing.

In the sentence,

laDake phala khaa rahe heiM.
boys fruits eat -ing are
(Boys are eating fruits.)

the first noun group is formed out of laDake alone. Only the plural-direct
lexical entry takes part, and the number of resulting noun group is plural.

4.4 Strategy for Grammar Development

While the approach outlined above works quite well for most of the sen-
tences, there are some problem cases. The problems usually arises due
to ambiguity in lexical category of words, which produces conflict in word
grouping. Depending on what lexical category is actually present, it results
in a different word group.

To handle the problem cases we need a flexible approach which can make
use of special rules and possibly, case by case analysis. We follow the ap-
proach in which grammar rules are arranged in layers, each layer containing
rules and forming an exception to the higher layer. This approach, called
utsarga-apavaada (default-exception), is advocated by Patanjali (Kielhorn,
1880) for writing a practical and comprehensive grammar.

54

CHAPTER 4. LOCAL WORD GROUPING

Let us first look at some of the conflicts and special rules (for some of
the conflicts). Later we will look at the approach.

1.

Conflict between taa form of verbs and the corresponding nouns: ‘so-

taa’ is a verb (meaning ‘to sleep’) as well as a noun (meaning under-
ground water). Similarly ‘khaataa’ verb and ‘khaataa’ noun (ledger
or account).

Conflict between yaa form of verb and the corresponding nouns:
‘diyaa’ in Hindi can occur as a verb (to give) or as a noun (lamp).

Conflict between naa form of verb and nouns: ‘sonaa’ can occur as a
verb (to sleep), a verbal noun (the act of sleeping), karma of verb, or
as a noun unrelated to sleep (gold). The first three senses are related
and the conflicts are systematic. Similar conflicts are likely to occur
in many other cases. The last conflict for the sense (gold) is ‘random’
however. So also are the conflicts for cases (1) and (2) above. It
should be possible to deal with systematic conflicts by general rules
discovered by linguists; for the random conflicts, however, no rules
are expected to work and a case by case treatment is necessary.

Conflict of verbal root with noun: ‘samajha’ can occur as a verb (to
understand) as well as a noun (the result of understanding).

Conflicts of parsargs with nouns, verbs, relational words, etc. For
example, se, kii, ke liye, and para normally occur as parsargs, but
sometimes they act as other category of words.

The above kind of conflicts can potentially be taken care of by the
utsarga-apavaada approach in which there are multiple layers of rules. Nor-
mal rules are in layer 1. The problem cases, like the ones outlined above,
would be declared as exceptions and there would be rules in layer 2 for
them. Here is a sketch of the layers for Hindi:

Layer 1 (General conflict resolver):

1. If word is followed by pure parsarg — noun. (where ‘—’ shows
‘word resolves to’).

2. If word is followed by verb sequence at the end of the sentence
— final verb goup (most likely).

Layer 2 (Specific exceptions): In case of tam taa or yaa:

1. If followed by ‘huaa’ — verb (most probably). (Exception to be
handled at layer 3 for khaataa as mentioned above.)

2. If reduplication (e.g., khaate khaate) — verb.

4.5. SEMANTICS IN STAGES 95

3. If immediate previous word is kaa — noun (most likely). (Ex-
ception to be handled at layer 3 for sotaa as mentioned above.)

Note that exceptions that lead to layer 3 are identified, but suitable
rules at that layer have not been worked out. That task remains for the
future. There is a need to take up systematic studies on this and related
issues.

4.5 Semantics in Stages

Another significant aspect of our approach is that we do not try to get
the full semantics immediately, rather it is extracted in stages depending
on when it is most appropriate to do so. For example, in verb grouping
only TAM label is created, detailed time and modality information is not
extracted. In fact, examples suggest that such information is rather com-
plex and requires further processing and context etc. A particular TAM
like “taa_hei” (written as “taa hei”, “tii hei” depending on gnp) captures
various shades of meanings as shown below

1. raama chaaya pitaa hei.
Ram drinks tea.
(or Ram has no objection to drinking tea)

2. suurya puurva me nikaltaa hei.
The sun rises in the east.
(refers to periodicity in a natural law like sunrise)

3. prithvii suurya ke caaroM tarafa ghuumtii hei.
Earth revolves around the sun.
(refers to continuity in a natural law like the earth moving round the
sun)

4. usake baada raama ghara jaataa hei aura use ghara banda miltaa hei.
After that Ram goes home and he finds the house locked.
(in the context of story telling, it indicates one instance of the activity
of going and finding)

5. yadi vaha aataa hei to tuma jaanaa.
If he comes, you go.
(in a conditional sentence it signifies a one time activity)

6. raama ko teirnaa aataa hei.
Ram knows swimming.
(indicates capability)

56 CHAPTER 4. LOCAL WORD GROUPING

7. bicchuu danka maarataa hei.
Scorpion stings.
(shows the scorpion’s inherent nature which is situation dependent)

8. raama isa samaya duudha piitaa hei.
At this time, Ram drinks milk.
(shows habit)

9. raama in dinoM? duudha piitaa hei.
These days Ram drinks milk.
(signifies an activity which is localised in recent time)

Thus, a single TAM label ‘taa_hei’ produces all the above different mean-
ings.

In machine translation for Indian languages, it would be sufficient to
keep TAM labels without doing any semantic analysis provided the map-
ping of TAM label from source language to TAM label in the target language
covers the senses spanned. Preliminary analysis among Hindi, Telugu, Kan-
nada and Tamil indicates that it is indeed so.

4.6 Some Open Problems

We list below some problems relating to conflicts between parsargs and
other lexical categories, for which the solutions in terms of suitable rules
remain to be worked out.

1. ‘se’ can be used as a comparision word. For example,

phoola se komala raama ne dhanusha toda diya.
flower like soft Ram -ne bow broke
(Ram who was as soft as a flower broke the bow.)

If ‘se’ is taken as a parsarg here, the sentence would indicate flower
as an instrument:

Soft Ram broke the bow with a flower

Perhaps when ‘se’ is used as a comparision word, there are only a
limited number of words that can follow it. Linguists can make a
catalogue of such words.

2. ‘kii’ can occur as a verb. For example,

2Note that ‘dinoM’ is the oblique form of ‘dina’ (day), yet it is not followed by a
postposition. Such time phrases are exceptions to the rule described in Sec. 4.3. (These
can be handled by declaring them as exceptions.)

4.6. SOME OPEN PROBLEMS 57

raama ne mohana se baata kii.
Ram -ne Mohan -se talk -ed.
(Ram talked to Mohan.)

It might appear that one way to distinguish between the two usages
is that the verb occurs at the end of the sentence unlike the parsarg.
When ‘kii’ occurs at the end, it can only be a verb. But would the
following sentence be considered an incorrect sentence:

raama ne kitaaba padhi mohana kii.
Ram -ne Dbook read Mohan -kii
(Ram read the book of Mohan.)

3. ‘para’ can occur as a noun. For example
)

chitrakaara para se chitra banaataa hei .
artist feather -se picture make -s
(Artist makes a picture with a feather.)

Note that ‘par se’ together can act as parsarg. For example,

vayuyaana sira para se gujaraa.
aeroplane head -par -se passed
(The aeroplane passed overhead.)

4. ‘ke liye’ can occur as a parsarg ‘ke’ followed by the verb ‘liye’. For
example,

meine ye aama dasa rupaye ke liye.
I these mangoes ten rupees -ke bought
(I bought these magoes for ten rupees.)

We have mentioned the conflict in ‘taa’ forms of sotaa and khaataa verbs
which also correspond to nouns. The LWG must make the right choice.
Normally, depending on whether a postposition marker or an auxiliary verb
follows ‘khaataa’ (or ‘sotaa’, for that matter) it can be decided whether it is
used in the verb sense or the noun sense. However, there are some problem
cases. In the sentence below, for example, a verb ‘hua’ follows ‘khaataa’
which occurs in a noun sense.

jaba se khaataa hua hei, neeMda nahiM aatii.
Since when account being, sleep not come
(Ever since I have an account, I cannot sleep.)

58 CHAPTER 4. LOCAL WORD GROUPING

4.7 Conclusions

In this chapter, we have argued for the need for local word groups in Indian
languages to handle those units in which word order is important. These
word groups seem to be at the right level because firstly, they allow us
to deal with issues of kaaraka role assignment (in core parsing) uniformly
(hopefully) for all Indian languages. Secondly, they make exactly the right
kind of information available to the core parser. We have also outlined the
utsargs-apavaada approach to grammar design that is particularly suited
for grammar development.

Further Reading

The concept of local word grouping for Indian languages discussed here
is based on Bharati et al. (1991), and Bhanumati (1989). For utsarga-
apvada approach of Patanjali, see Kielhorn (1880).

Exercises

4.1 Does your mother tongue have local word groups for verbs? If yes,
choose a verb and identify all possible sequences of auxiliary verbs that can
follow it.

4.2 In the verb and its auxiliaries you have identified in Exercise 4.1, what
are the agreement rules.

4.3 Write a local verb grouping program yourself or use an existing pro-
gram (e.g., local word grouper package or finite state machine package such
as LEX) that uses the rules obtained in Exercise 4.2 to form verb groups
in an input sentence.

4.4 Try to make a catalog of exceptions where the post position marker
can be used as a verb or noun etc. Can you suggest a heuristic to recognize
when it is a marker and when not?

4.5 Work on one of the open problems in Sec. 4.6. Can you come up with
some heuristics for resolving the conflict.

Chapter 5

Paninian Grammar

5.1 Introduction

How is it that natural language is used by speakers to convey information to
the hearers? How is it that on hearing an utterance, the hearers are able to
get the intended information? These are the questions that have intrigued
Paninians. The goal of the Paninian approach is to construct a theory
of human natural language communication that answers these questions.
Grammar, a part of such a theory of communication, is a system of rules
that establishes a relation between what the speaker decides to say and
his utterance, and similarly, what the hearer hears and the meaning he
extracts.?

The main problem the Paninian approach addresses is how to extract
karaka relations (which are syntactico-semantic relations) from a sentence.
As it is inspired by an inflectionally rich language, it emphasizes the roles of
case endings and markers such as post-positions (or prepositions). Positions
or word order is brought into consideration only when necessary.

A majority of human languages including Indian and other languages
have relatively free word order. In free word order languages, order of
words contains only secondary information such as emphasis etc. Primary
information relating to ‘gross’ meaning (e.g., one that includes semantic

1K.V. Ramakrishnamacharyulu of Rashtriya Sanskrit Vidyapeetha, Tirupati is the
co-author of this chapter.

2There is a difference between the goals of Paninian approach on the one hand and
(Chomskyan) generative enterprise on the other. The latter is interested in identifying
the innate universal grammar in the mind of every human child by which he or she so
effortlessly and without explicit tutoring acquires language that he or she is exposed to.

59

60 CHAPTER 5. PANINIAN GRAMMAR

relationships) is contained elsewhere. In contrast to the languages, most
existing computational grammars are based on context free grammars which
are basically positional grammars. These are designed for languages in
which position of a constituent in a sentence contains key information. It
is important to develop a suitable computational grammar formalism for
free word order languages for two reasons:

1. A suitably designed formalism will be more efficient because it will
be able to make use of primary sources of information directly.

2. Such a formalism is also likely to be linguistically more elegant and
satisfying. Since it will be able to relate to primary sources of infor-
mation, the grammar is likely to be more economical and easier to
write.

In this chapter, we describe such a formalism, called the Paninian frame-
work, that has been successfully applied to Indian languages.

5.2 The Semantic Model

In this section, we describe the elements of the semantic model in the
Paninian framework.
Every verbal root (dhaatu) denotes an action consisting of:

1. an activity (a vyaapaara), and
2. aresult (a phala)

Result is the state which when reached, the action is complete. Activity
consists of actions carried out by different participants or karakas® involved
in the action.

An action is usually a complex which can be broken into sub-actions.
For example, in the opening of a lock, a person inserts a key in the lock and
turns it, the key on its part presses the levers and moves them, the latch
in turn moves and the lock opens (Figure 5.1). Each of the sub-actions
(e.g., inserting and turning a key, the key pressing and moving the levers,
the latch moving and the lock opening) has its own semantic relations with
associated objects.

Another important concept is that of vivaksha. Vivaksha refers to the
speaker’s viewpoint or attitude towards the activity. A sentence is not only
a statement of an objective activity but also contains information regard-
ing the speaker’s viewpoint. (Vivaksha should not be confused with the

3Karaka pronounced as ‘kaarak’ is defined later.

5.2. THE SEMANTIC MODEL 61

opening of lock

inserting and key pressing against latch moving
turning a key and moving levers and lock opening
(action 1) (action 2) (action 3)

Figure 5.1: Structure of an action

speaker’s intentions which come under pragmatics.) Usually, vivaksha af-
fects the choice of verb form which, in turn, affects the choice of participants
and their relation with or role in the action.

Out of all the participants in an action, there is one who is ‘swatantra’
or most independent, and is called karta* karaka. Thus, in the following
sentences:

A.1 The boy opened the lock.
A.2 The key opened the lock.
A.3 The lock opened.

the karta is, respectively, the boy, the key, and the lock.

The Paninian theory chooses to talk in terms of karta instead of agent.
It is not just a change in nomenclature, but as the above example shows,
karta and agent are different in general.

According to Kaundbhatta, who further elaborates on the concept of
swatantra, every verb in a sentence refers to a complex of activity. Fre-
quently, however, the same verb can be used to refer to not only the main
activity but also to sub-parts of the complex.® Karta of a verb in a sentence
is one which is the ‘aashraya’ or locus of the activity. Thus, in A.1 the ac-
tivity referred to is the act of opening of the lock by the boy by inserting
a key and turning it, etc. (action 1 in Figure 5.1). Thus, the boy is the

4Karta is pronounced ‘kartaa’.
5Sometimes the verb can be ambiguous, in which case it may refer to one of several
actions. When used in a sentence, it may refer to any one of its possible actions.

62 CHAPTER 5. PANINIAN GRAMMAR

karta of this activity. In A.2, the activity referred to is the pressing and
moving of the levers by the key causing the lock to open, etc. (action 2 in
Figure 5.1). The ‘key’ is the karta of this activity. In A.3, the activity is
that of motion of the latch and opening of the lock (action 3 in Figure 5.1).
Here, the karta is the lock. In A.1 the speaker decides to give importance
to the role of the boy, whereas in A.2 the speaker wishes to emphasize the
role of the key. (“It is this key which opened the lock!”) In A.3 the speaker
emphasizes the fact that the lock has been opened; which key opened it
and who opened is unimportant as far as that utterance is concerned. As
further evidence that the same verb ‘open’ refers to distinct actions (how-
soever related they might be), note that in a language like Hindi there is a
different word for ‘open’ in A.3 as compared to A.1 and A.2. See B.1, B.2
and B.3 below for Hindi sentences.

B.1 mohana ne taalaa kholaa.
Mohan -ne 1lock opened
(Mohan opened the lock.)

B.2 isa caabii ne taalaa kholaa.
This key -ne lock opened
(This key opened the lock)

B.3 taalaa khula gayaa.
lock opened
(The lock opened.)

The notion of karaka relations is central to the Paninian model. The
karaka relations are syntactico-semantic (or semantico-syntactic) relations
between the verbals and other related constituents in a sentence. They
capture a certain level of semantics. But this is the level of semantics
that is important syntactically and is reflected in the surface form of the
sentence(s). Figure 5.2 shows the relationship.

In Figure 5.2, the surface level is the uttered or written sentence. The
vibhakti level is the level at which there are local word groups based on
case endings, preposition or postposition markers.% Vibhakti for nouns has
already been defined earlier. A noun group is a unit containing a noun (or
a pronoun, proper name, etc.), its vibhakti and possibly some adjectives.

Vibhakti for verbs can be defined similar to that for the nouns. A head
verb may be followed by auxiliary verbs (which may remain as separate
words or may combine with the head verb). Such information is collectively
called vibhakti for the verb. The vibhakti for a verb gives information about
tense, aspect and modality (TAM), and is, therefore, also called the TAM
label. TAM labels are purely syntactic determined from the verb form and
the auxiliaries.

8For positional languages such as English, it would also include position or word order
information.

5.2. THE SEMANTIC MODEL 63

--- semantic level (what the speaker has in mind)

--- karaka level

--— vibhakti level

--- surface level (uttered sentence)

Figure 5.2: Levels in the Paninian model

The vibhakti level abstracts away from many minor (including ortho-
graphic and idiosyncratic) differences among languages. The topmost level
relates to what the speaker has in his mind. This may be considered to
be the ultimate meaning level. Between this level and vibhakti level is the
karaka level. It includes karaka relations and a few additional relations
such as tadarthya (or purpose). One can imagine several levels between the
karaka and the ultimate level, each containing more semantic information.
Thus, karaka level is one in a series of levels, but one which has relationship
to semantics on the one hand and syntax on the other.

There are only around six different types of karaka relations. It is clearly
not possible for them to capture the innumerable types of semantic rela-
tions among all possible actions or states (written as verbs) and all possible
objects (written as nominals) in the world. What the karaka relations do
specify with respect to a verb, however, are six or so relations of nomi-
nals (or verbals) that participate in the action specified by that particular
verb. These are sufficient for providing a mapping from karaka relations
to semantic relations. Thus, the karakas provide the maximum necessary
information relative to a verb. As an example, the karta karaka may get
mapped to agent for one verb, and experiencer for another, etc.

We have already seen the definition of karta karaka. Here, we informally
discuss the remaining ones. We saw earlier that karta, the swatantra or the
most independent participant in an action, is the ashraya (or the locus) of
activity. In other words, the activity resides in or springs forth from the
karta. Ashraya of the result is called karma, if it can be different from karta.
A verb in which ashraya of activity and result can be different, is called
sakarmaka (loosely, transitive). For example, in the following sentence:

raama ne raavana ko tiira se maaraa.

64 CHAPTER 5. PANINIAN GRAMMAR

Ram ergative Ravan accus. arrow instr. killed
(Ram killed Ravan with an arrow.)

Ram is the karta, and Ravan is karma.

Similarly karana karaka is the instrument. With the vyapara (or activ-
ity) of the karana, phala (or result) is immediately achieved. Thus, in the
above example, with the vyapara of the arrow (i.e., motion of the arrow
and striking Ravan) the result of the verb (kill) is immediately achieved.

Adhikarana karaka is the locus of karta or karma. It is what supports,
in space or time, the karta or the karma.

Apadan 7 karaka is that participant in an action involving separation
which remains stationary (or is the reference) when the separation takes
place. Note that vivaksha or speaker viewpoint towards a separation event
is what is important in determining what is stationary or the reference
point. For example, in the following sentence:

peDa se baaga meiM patte gire.
tree -se garden -meiM leaves fell
(Leaves fell from the tree in the garden.)

the tree is the apadana, and garden is adhikarana.
Sampradana® is the beneficiary. For example, in the following sentence:

laDakaa laDakii ko phoola detaa hei.
boy girl acc. flower gives
(The boy gives a flower to the girl.)

the ‘girl’ is the sampradana.
There is another relation called tadarthya (roughly translated as pur-
pose), which connects two verbs by the ‘purpose’ relation. For example:

aadami ne naava banane ke 1liye lakaDii kaaTii.
man -ne boat to-make -ke -liye wood cut
(The man cut wood to make a boat.)

Even though taadaarthya is not a karaka relation, it is included here because
of the important role it plays.

It should be re-emphasized that other than karta, we have had no de-
tailed discussion on any other karaka. For more details on other karakas
see work by Kaundabhatta (Shastri, 1973).

5.3 Free Word Order and Vibhakti

Indian languages have a relatively free word order. Many of the constituents
of a simple sentence can occur in any order without affecting the gross

7Pronounced ‘apaadaana’
8Pronounced ‘sampradaana’

5.3. FREE WORD ORDER AND VIBHAKTI 65

meaning of the sentence; what is affected is perhaps the emphasis, etc. For
instance, noun groups in a sentence can come in any order without affecting
the karaka relationship (or theta relationships) between the verb and the
noun groups. Since position or order of occurrence of a noun group does not
contain information about the karaka or theta roles in a simple sentence,
a question can be asked regarding what carries this information. The an-
swer seems to be that post-position markers after nouns (in North Indian
languages) or surface case endings of nouns (in South Indian languages)
or a mixture of the two at times, play a key role in specifying semantic
relationships. We will collectively refer to the post position markers and
surface case endings of nouns as vibhakti of nouns. Consider the following
sentences of Hindi (Bharati et al. (1991a)).

C.1 raama mohana ko piiTataa hei.
Ram Mohan -ko beat is
(Ram beats Mohan.)

C.2 mohana ko raama piiTataa hei.
Mohan -ko Ram beat is
(Ram beats Mohan.)

C.3 mohana raama ko piiTataa hei.
Mohan Ram -ko beat is
(Mohan beats Ram.)

C.4 raama ko mohana piiTataa hei.
Ram -ko Mohan beat is
(Mohan beats Ram.)

In C.1 and C.2, Mohan has the same vibhakti (i.e., parsarg or postposition
‘ko’) and semantic relation with beating. Even though the positions of
‘raama’ and ‘mohana ko’ are interchanged in C.2, it does not alter the
respective semantic relations of Ram and Mohan with the verb. C.3 and
C.4 show that semantic relation of Ram is interchanged with that of Mohan
by interchanging their vibhakti. So the vibhaktis are crucial in determining
the semantic roles. Relative position of the nominal seems to be not very
important for determining semantic relations.

However, things are not always straightforward and the following need
to be accounted for:

1. A different vibhakti can be used for the same semantic relation with a
given verb in a different sentence. For example, in the Hindi sentences
D.1 to D.4, although Ram has the same semantic relation with eat
(namely, the agent of eat), a different vibhakti is used each time (¢,
ne, ko, se which represent nominative, ergative, accusative, ablative,
respectively).

66

CHAPTER 5. PANINIAN GRAMMAR

D.1 raama phala ko khaataa hei.
Ram fruit -ko eats is
(Ram eats the fruit.)

D.2 raama ne phala khaayaa.
Ram -ne fruit ate
(Ram ate the fruit.)

D.3 raama ko phala khaanaa paDaa.
Ram -ko fruit eat had-to
(Ram had to eat the fruit.)

D.4 raama se phala nahii khaayaa gayaa.
Ram -se fruit not eat could
(Ram could not eat the fruit.)

2. Same vibhakti can be used with the same verb for two different se-
mantic relations. In E.1 and E.2, the same vibhakti (that is, ‘ne’
parsarg) is used for Mohan and the key, whereas their semantic re-
lation to ‘open’ are quite different. Similarly for ‘se’ in E.3 and E.5,
(E.1, E.2 and E.4 are same as B.1, B.2, B.3, respectively).

E.1 mohana ne taalaa kholaa.
Mohan -ne lock opened
(Mohan opened the lock.)

E.2 isa caabii ne taalaa kholaa.
this key -ne lock opened
(This key opened the lock)

E.3 caabii se taalaa khula gayaa.
key by lock opened
(The lock opened ‘unexpectedly’ by the key.)

E.4 +taalaa khula gayaa.
lock opened
(The lock opened.)

E.5 Dbacce se taalaa khula gayaa.
child by lock opened
(The lock was opened unintentionally by the child)
OR (The child was able to open the lock.)

5.4. PANINIAN THEORY 67

5.4 Paninian Theory

Paninian grammar is particularly suited to free word order languages. It
makes use of vibhakti information for mapping to semantic relations, and
uses position information only secondarily. As the Indian languages have
(relatively) free word order and vibhakti, they are eminently suited to be
described by Paninian grammar. The Paninian framework was originally
designed more than two millennia ago for writing a grammar of Sanskrit;
it has been adapted by us to deal with modern Indian languages.

5.4.1 Karaka Relations

Example sentences in Hindi from the previous section (in C, D and E)
indicate that there is no straightforward mapping from vibhakti to semantic
relation between noun groups and verbs. The key to arriving at an answer
is to identify appropriate relations, i.e., karaka relations.

The most important insight regarding the ggkaraka-vibhakti mapping is
that it depends on the verb and its tense aspect modality (TAM) label. The
mapping is represented by two structures: default karaka chart and karaka
chart transformation. The default karaka chart for a verb or a class of
verbs gives the mapping for the TAM label known as basic. It specifies the
vibhakti permitted for the applicable karaka relations® for the nouns etc.
when the verb has the basic TAM label. The basic TAM label chosen for
Hindi is ‘taa_hei’ and roughly corresponds to present indefinite tense. Any
other TAM label could have been chosen as basic without any problem. The
TAM labels are purely syntactic in nature and can be determined by looking
at the verb form and the associated auxiliary verbs, etc. For other TAM
labels, there are karaka chart transformation rules. Thus, for a given verb
with some TAM label in a sentence, appropriate karaka-vibhakti mapping
can be obtained using its default karaka chart and the transformation rule
depending on its TAM label.

The default karaka chart for three of the karakas is given in Figure 5.3.
This explains the vibhaktis in sentences C.1 to C.4. As Ram is the agent
in C.1 and C.2, and Mohan in C.3 and C.4, and the agent is the most
independent for the action (beat), it is expressed by means of the karta
karaka; and the remaining nominal by karma karaka. For the karta karaka,
¢ vibhakti is used with taa_hei TAM label in C.1 to C.4 as explained in
Figure 5.3.

Figure 5.4 gives some transformation rules for the default mapping for
Hindi. It explains the vibhakti in sentences D.1 to D.4 (assuming that Ram
is the karta and phala (fruit) is the karma). As explained by Figure 5.4,

9What karaka relations are permissible for a verb, obviously depends on the particular
verb. Not all verbs will take all possible karaka relations.

68 CHAPTER 5. PANINIAN GRAMMAR

Karaka Vibhakti Presence
Karta ¢ mandatory
Karma ko or ¢ mandatory
Karana se or dvaaraa optional

Figure 5.3: Default karaka chart

karta takes ‘ne’ vibhakti in D.2 because of TAM label ‘yaa’ (in the main verb
group khaayaa), ‘ko’ in D.3 because of TAM label naa_paDaa (in khaanaa
paDaa), and ‘se’ in D.4 because of TAM label yaa_gayaa (in khaayaa gayaa
). (See Appendix for how Paninian Grammar handles similar phenomena
in Sanskrit.)

TAM label Transformed vibhakti for karta
yaa ne
naa_paDaa ko

yaa_-gayaa se or dvaaraa (and karta is optional)

Figure 5.4: Transformation rules

The default mapping and transformation rules also explain E.1 to E.5.
Note that by our definition of swatantra or independent, Mohan is the karta
in E.1, caabii (or key) in E.2, and taalaa (or lock) in E.3, E.4 and E.5. After
this the vibhaktis of karta in E.1 to E.5 are as explained in Figure 5.4.1°

In general, the transformations affect not only the vibhakti of karta but
also that of other karakas. They also ‘delete’ karaka roles at times, that is,
the ‘deleted’ karaka roles do not occur in the sentence.

It is important to re-emphasize that the transformation depends on
TAM label which is purely syntactic, and not on tense, aspect and modality
which are semantic. The TAM label can be determined for Hindi and other
Indian languages by syntactic forms of the verb and its auxiliaries without
the need to refer to any semantic aspects. The specification for obtaining
TAM labels is given by a finite state machine as described in Chap. 4.

The Paninian theory outlined above (i.e., karaka charts and karaka chart
transformations) can be used to generate (or analyze) the sentences given
above as we have seen. However, there are additional constraints that would
disallow the following sentences to be generated, for example!!:

10The choice of nominals to be used in the sentence is made by the speaker using
vivaksha while mapping from semantic level to the karaka level.
11 A < before a sentence indicates that it is not a good sentence.

5.5. ACTIVE PASSIVE 69

F.1 *ladake ne raama ne laDakii ko kitaaba dii.
boy -ne Ram -ne girl -ko book gave
(#*The Ram the boy gave a book to the girl.)

F.2 *laDake ne laDakii ko kitaaba phoola dii.
boy -ne girl -ko book flower gave
(#The boy gave a book a flower to the girl.)

The constraints are given below:

1. Each mandatory karaka in the karaka chart for each verb group, is
expressed ezactly once. (In other words, a given mandatory karaka
generates only one noun group with the specified vibhakti in its karaka
chart unlike in F.1.)

2. Each optional karaka in the karaka chart for each verb group, is ex-
pressed at most once.

3. Each source word group satisfies some karaka relation with some verb
(or some other relation). In other words, there should no unconnected
source word group in a sentence, otherwise, the sentence becomes bad
asin F.2.

Karaka charts are based on the idea of aakaankshaa and yogyataa
mentioned earlier in Chap. 2. A karaka chart for a verb expresses its
aakaankshaas or demands, and specifies the vibhaktis that must be used
(i-e., yogyataa) with word groups that satisfy the demands.

The same ideas can be used to handle noun-adjectives, noun-noun rela-
tions, verb-verb relations etc.

To show that the above, though neat, is not just an ad hoc mecha-
nism that explains the isolated phenomena of semantic roles mapping to
vibhaktis, we discuss two other phenomena: active-passive and control.

5.5 Active Passive

No separate theory is needed to explain active-passives. Active and passive
turn out to be special cases of certain TAM labels, namely, those used to
mark active and passive. Again consider the following example in Hindi.

F.3 raama mohana ko piiTataa hei. (active)
Ram Mohan -ko beats pres.
(Ram beats Mohan.)

F.4 raama dvaaraa mohana ko piiTaa gayaa. (passive)
Ram by Mohan -ko beaten was
(Mohan was beaten by Ram.)

70 CHAPTER 5. PANINIAN GRAMMAR

Verb in F.4 has TAM label as yaa_gayaa. Consequently, the vibhakti
‘dvaaraa’ for karta (Ram) follows from the transformation already given
earlier in Figure 5.4.

5.6 Control

A major support for the theory comes from complex sentences, that is,
sentences containing more than one verb group. We first introduce the
problem and then describe how the theory provides an answer. Consider
the following sentences in Hindi:

G.1 raama phala khaakara mohana ko bulaataa hei .
Ram fruit having-eaten Mohan -ko calls is
(Having eaten fruit, Ram calls Mohan.)

G.2 raama ne phala kaaTakara khaayaa
Ram ne fruit having-cut ate
(Ram ate having cut the fruit.)

G.3 phala kaaTane ke liye usane caakuu liyaa .
fruit to-cut -ke-liye he-ne knife took
(To cut fruit, he took a knife.)

In G.1, Ram is the karta of both the verbs: khaa (eat) and bulaa (call).
However, it occurs only once. The problem is to identify which verb will
control its vibhakti. In G.2, karta Ram and the karma phala (fruit) both
are shared by the two verbs kaaTa (cut) and khaa (eat). In G.3, the karta
‘usa’ (he) is shared between the two verbs, and ‘caakuu’ (knife) the karma
karaka of ‘lii’ (take) is the karana (instrumental) karaka of ‘kaaTa’ (cut).

The observation that the matrix or main verb rather than the interme-
diate verb controls the vibhakti of the shared nominal is true in the above
sentences. The theory we will outline to elaborate on this theme will have
two parts. The first part gives the karaka to vibhakti mapping as usual,
the second part identifies shared karakas.

5.6.1 Karaka to Vibhakti Mapping

The intermediate verbs have their TAM labels just like other verbs. For
example, kara is the TAM label of khaa (eat) in G.1 and G.2, and naa is
the TAM label of kaaTa (cut) in G.3. As usual, these TAM labels have
transformation rules that operate and modify the default karaka chart. In
particular, the suggested transformation rules for the two labels are given
in Figure 5.5. The transformation rule with kara in Figure 5.5 says that

5.6. CONTROL 71

TAM label Transformation

kara Karta must not be present. Karma is
optional.

naa Karta and karma are optional.

taa_huaa Karta and karma are optional.

Figure 5.5: More transformation rules (for complex sentences)

karta of the verb with TAM label kara must not be present in the sentence
and the karma is optionally present.

By these rules, the intermediate verb khaa (eat) in G.1 and kaaTa (cut)
in G.2 do not have (independent) karta karaka present in the sentence. Ram
is the karta of the main verb. phala (fruit) is the karma of khaa in G.1 but
not of kaaTa in G.2. In the latter, phala is the karma of the main verb. All
these are accommodated by the above transformation rule for ‘kara’.'? The
modifier-modified tree structures produced are shown in Figure 5.6 (ignore
dotted lines).

5.6.2 Karaka Sharing

Now we give rules for obtaining the shared karakas.
Karta of the intermediate verb khaa in G.1 and G.2 can be obtained by
the sharing rule S1°.

Rule S17’: Karta of a verb with TAM label ‘kara’ is the same as the karta
of the main verb.

The sharing rule(s) are applied after the tentative karaka assignment is over
using karaka to vibhakti mapping.

For karma of intermediate verb with TAM label kara, we have the shar-
ing rule S2’.

Rule S2’: If an intermediate verb with the TAM label ‘kara’ takes a karma
(as specified in its default karaka chart) while none has been obtained
using karaka vibhakti mapping, then it shares its karma with the karta
or the karma of the main verb.

12Bhartrahari formulated the original rule that if a nominal has a karaka relationship
with two verbs, then the main verb will control its vibhakti.

72 CHAPTER 5. PANINIAN GRAMMAR

(145.79082,28.45274)(13.62503,0) %?45?’79082,28.45274) (92.84201,0) (145.79082,28.452’%‘@)?2@5.0078,0)
raama mohana,]

[50]3(66.57382,28.45274)(15.2917,0) [5@%?66.57382,28.45274) (106.05037,0)
raama phala (fruit)

(142.17967,28.45274) (13.62503,0) EI34 7967,28.45274) (102.71703,0) (142.17967,28.45274 J3127167,0)
raama phala (fruit)

[50]3(53.08768,28.45274)(15.2917,0) [5@fi§?53.08768,28.45274) (92.56422,0)
raama phala

(222.87856,28.45274) (20.69449,0) (253182856,28.45274) (121.28651,0) (222.87856,28.45274) (32545958 0)
vaha (he) caakuu (knife)

[50]3(122.28653,28.45274) (15.2017,0) [501371.22.28653,28.45274) (106.05037,0) 51
raama phala(fruit) caakuu(knife)

Figure 5.6: Modifier-modified relations for sentences G.1, G.2 and G.3,
respectively. (Shared karakas shown by dotted lines.)

5.6. CONTROL 73

With the above rules, the shared karakas for G.1, G.2 and G.3 are shown
in Figure 5.6 by dotted lines. In the following example,

H.1 khariidakara raama ne phala khaayaa.
having-bought Ram -ne fruit ate
(Ram ate fruit having bought it.)

karta and karma of khariida (buy) are the same as the karta and karma,
respectively, of khaa (eat). Figure 5.7 shows the relationships pictorially.

(138.84634,28.45274) (13.62503,0) MIE84634,28.45274) (102.71703,0) (138.84634,28.45274 1398 3834,0)
raama phala (fruit) kharii

[50]3(49.75433,28.45274)(13.62503,0) [%"?J‘]ET49.75433,28.45274) (87.56421,0)
raama phala

Figure 5.7: Parse structure for sentence H.1

Similarly, the sharing rule for taa_huaa can be stated as S3’.

Rule S3’: Anintermediate verb with TAM label ‘taa_huaa’ shares its karta
with the karta of the main verb.

As example, consider:

H.2 shikaarii ne bhaagate hue shera ko dekhaa .
hunter -ne while-running 1lion -ko saw
(The hunter saw a lion while running.)

The above is ambiguous between whether the hunter was running or the lion
was running. Now, karaka vibhakti mapping yields the following relation:

dekha (see)
karta: shikaarii (hunter)
karma: shera (lion).
bhaaga (run)
no karaka relation expressed explicitly

The above are shown pictorially in Figure 5.8 (ignore dotted lines for now).

74 CHAPTER 5. PANINIAN GRAMMAR

(129.61986,28.45274) (37.9723,0) (129.61086:28.45274) (149.356,0) (129.61986,28.45274) (241.003565 M2
shikaarii (hunter) shera (lion) bhaaga (run)

[50]3(18.23616,28.45274)(18.23616,0) karta
shikaarii

Figure 5.8: Parse structure for sentence H.2

By Rule S3’, we can identify the shared karakas of run. Here, the karta
of run would be the hunter. This is shown by dotted lines in Figure 5.8.

There is another parse for the sentence corresponding to verb-noun mod-
ification with verbal ‘bhaagate hue’ (running) modifying noun ‘shera’ (lion).
Karaka relations of dekha (see) as obtained by karaka vibhakti mapping are
the same. But since bhaaga modifies shera , the karta of bhaaga is shera
by rule S4 given below. The parse structure is shown in Figure 5.9.

Rule S4: If a verb with TAM label taa_huaa modifies a noun, then that
noun is its karta.

dekha (see)

karta karma
shikaarii shera
(hunter) (1iom)

|
| v-n modification
I
bhaaga (run)
|

| karta

shera

Figure 5.9: Another parse structure for sentence H.2

5.6. CONTROL 75

The part of parse structure shown by solid lines is obtained by karaka
vibhakti mapping. The part shown in dotted lines (the karta of bhaaga) is
obtained by Rule S4.

When there are more than one intermediate verb groups in a sentence,
there is a need to generalize the rules given earlier. To obtain the shared
karaka of an intermediate verb, instead of getting it from the main verb we
must obtain it from the verb (action) modified by the intermediate verb.
The modified verb could be the main verb or another intermediate verb.
The new generalized Rules are S1, S2 and S3.

Rule S1: Karta of intermediate verb with TAM label ‘kara’ is the same
as the karta of the verb modified by the intermediate verb.

Rule S2: If an intermediate verb with the TAM label ‘kara’ takes a karma
(as specified in its default karaka chart) while none has been obtained
using karaka vibhakti mapping, then it shares its karma with the karta
or the karma of the verb modified by the intermediate verb.

Rule S3: An intermediate verb with TAM label ‘taa_huaa’ shares its karta
with the karta of the verb modified by the intermediate verb.

As an illustration, consider the following sentence from Hindi:

H.3 raama ne haatha se chiilkara kelaa khaate hue
Ram —-ne hands -se having-peeled banana eating

bandara ko dekhaa.

monkey -ko saw.

(Ram saw a monkey eating a banana having peeled it
with his hands.)

The above is ambiguous as to who peeled and ate the banana. Karaka to
vibhakti mapping produces the following relations:

dekha (see)

karta: raama

karma: bandara (monkey)
chiila (peel)

karana: haatha (hand)
khaa (eat)

karma: kelaa (banana)

The above relations are shown in solid lines in Figure 5.10. Now, on apply-
ing the karaka sharing rule we get the following four alternative parses:

1. Assume chiila (peel) modifies khaa (eat).!> By Rule S1, karta of chiila
is the same as the karta of khaa. Similarly, karma of chiila is the same

13¢chiila’ has the TAM label ‘kara’, which means that it precedes the action it modifies.
Thus, ‘chiila’ modifies ‘khaa’ means that the action ‘chiila’ (peel) was performed before
performing the action ‘khaa’ (eat).

76 CHAPTER 5. PANINIAN GRAMMAR

as the karma, of khaa, by Rule S2. Now, there are two alternatives
for what khaa modifies.

(a) khaa (eat) modifies the verb dekha (see). By Rule S3, karta of
khaa is the same as the karta of dekha (see). Therefore:

khaa (eat)
karta: raama
chiila (peel)
karta: raama
karma: kelaa (banana)

Figure 5.10 (a) shows the parse structure.

(b) khaa (eat) modifies the noun bandara (monkey). By Rule S4,
bandara is the karta of khaa (eat).

khaa (eat)
karta: bandara (monkey)
chiila (peel)
karta: bandara (monkey)
karma: kelaa (banana)

Figure 5.10 (b) shows the parse structure.

2. Assume chiila (peel) modifies dekha (see). By Rule S1, karta of chiila
is same as karta of dekha, namely raama. By Rule S2, the karma of
chiila (peel) is the same as karma of dekha (see), namely, bandara
(monkey). This is semantically anomalous as monkeys cannot be
peeled. If world knowledge shows this to be an anomaly, further
processing would be blocked. However, if such world knowledge is not
available to the system, it would continue processing. There would
be two alternatives. Karta of khaa can have two possible choices like
in 1(a) and 1(b).

(c) khaa (eat) modifies dekha (see). Therefore, karta of khaa is the
same as the karta of dekha. (See Figure 5.10(c).)

khaa (eat)
karta: raama
chiila (peel)
karta: raama
karma: bandara

The kartas happen to be the same as in 1(a).

(d) khaa (eat) modifies bandara (monkey), which by rule S4 makes
it the karta of khaa. (See Figure 5.10(d).)

khaa (eat)
karta: bandara (monkey)

5.7. SUMMARY 7

chiila (peel)
karta: raama
karma: bandara

5.7 Summary

In this chapter, we have discussed the linguistic aspect of Paninian frame-
work as applied to modern Indian languages.

(238.05309,28.45274) (13.62503,0) E3805300,28.45274) (94.18903,0) (238.05309,28.452 BBIBER61708,0)
raama bandara(monkey)

(157.48909,28.45274) (13.62503,0) MEFF48909,28.45274) (86.53622,0) (157.48909,28.455
raama kelaa(banana)

(84.57788,28.45274) (13.62503,0) LB 788, 28.4527:
raama kelaa haatha (hand)

78 CHAPTER 5. PANINIAN GRAMMAR

dek!

(251.60097,56.9055) (13.62503,0) &51%0097,56.9055) (286.56557,0)
raama bandara (monkey)

(216.63638,56.9055)(216.63638,0) v-n modif

(216.63637,56.9055) (38.48622,0) (216.6585756.9055) (152.15164,0) (216.63637,56.9055) (330.30179,(prma
bandara(monkey) kelaa (banana)

(102.97095,56.9055) (17.79172,0) (}83167095,56.9055)
bandara kelaa haatha (hand)

Figure 5.10: Alternative parses (a) and (b) for the sentence H.3

5.7. SUMMARY 79

(248.06699,56.9055) (13.62503,0) EMED6699,56.9055) (73.49452,0) (248.06699, 56190553 180.00047,0) (248.06699,56.9055) (38
raama bandara khaa (eat)

(60.35147,56.9055) (13.62503,0) UM BAG 19695550 (% RAB6303,0) (REF 51963, 5620053 (95.855

raama kelaa (banana) raama bandara (monkey) haatha (hand)

()

(240.07675,56.9055) (11.12503,0) k2462076 75,56.9055) (137.58214,0) (240.07675,56.9055) (366.53388 1052
rama bandara(monkey)

(86.87933,56.9055) (86.87933,0) YR 391563,56.9055) (13.62503,0) KPES%1963,56.9055) (95.85568 (
raama bandara (monkey)khaa (&atha (hand)

(86.87932,56.9055) (40.15288,0) (86.874853186.9055) (141.25858,0) karma
bandara (monkey) kelaa (banana)

(d)

Figure 5.10: Alternative parses (¢) and (d) for the sentence H.3

80 CHAPTER 5. PANINIAN GRAMMAR

The original framework was applied to Sanskrit; here the concepts and
spirit of the framework have been used in explaining various language phe-
nomena.

Further Reading

Ideas presented in this chapter have evolved over the years, earlier
presented in Bhanumati (1989), Bharati et al. (1990), (1990b), (1991a),
(1993a), etc.

See Appendix A for a discussion on how Paninian Grammar is applied to
Sanskrit. References to traditional Paninian grammarians including Panini
and Bhartrahari are also given there. Iyer() discusses Bhartrahari’s work
on means.

Exercises

5.1 In the Paninian grammar, why do you need karaka chart transforma-
tion? Tllustrate with example sentences from, say, Hindi.

5.2 Show karaka assignments for the following sentences with and without
shared karakas. Show the rules by which shared kaarakas are identified. (In
case of ambiguity show more than one assignment)

(a) raama khaanaa khaakara paanii piitaa huaa ghara gayaa.
Ram food having-eaten water drinking home went
(Having eaten food, Ram went home drinking water.)

(b) raama dauDataa huaa murgaa khaakara ghara gayaa.
Ram running chicken havind-eaten home went
(Having eaten a chicken, Ram went home running. OR
Having eaten a running chicken, Ram went home.)

5.3
(a) Show the modifier-modified tree with karaka relations, verb-verb rela-
tions, etc. for the sentence given below:

raama ne beiThakara caavala pakaane ke liya
Ram -ne after-sitting rice to-cook

rasoiye ko patiilaa diyaa.

cook -ko vessel gave

(Ram gave a vessel to the cook for cooking rice
after sitting down.)

Show all parses for the sentence. A parse which cannot be ruled out on the
basis of syntax should be shown. (English translation is shown for conve-
nience. It might, however, not show all parses.)

5.7. SUMMARY 81

(b) Show the karaka chart for ‘pakaanaa’ (cook), before and after transfor-
mation.
(c) What is the sharing rule for karta of ‘pakaanaa’.

5.4
(a) Repeat Exercise 5.3(a) for the following sentence:

raama ne mohana se kahaa ki shyaama socataa hei ki ravii
Ram -ne Mohan -se said that Shyam thinks that Ravi

khaanaa khaate hue aadamii kii tasviire banataa hei
food eating man of picture makes

(Ram told Mohan that Shyam thinks that Ravi

makes a picture of the man while eating.)

(b) Show the karaka chart for ‘kahaa’ (said).

(c) ‘ki’ is a pre-position marker. What changes will you make in the parser
so that constraints are set up properly. (Show briefly and precisely what
rule(s) will get changed.)

5.5 What is the agreement rule between verb and noun in Hindi and how
will you handle it in the Paninian framework.

5.6 Why do we separate gnp from TAM for verbs?

5.7
(a) Show karaka assignment for the following sentence:

raama ne seva khaane ke liya paDosii se caakuu

Ram apple to-eat neighbour -se knife
lekara chilakaa utaaraa.
having-taken peel removed

(Having taken a knife from the neighbour, Ram
peeled the apple to eat.)

(b) Also show the shared karakas.

5.8 State the noun-verb agreement rule in Hindi for:
(a) Simple sentences

(b) Complex sentences

(Hint: You will have to state it in terms of karakas and post-positional
markers.)

5.9 For the sentences given below

82

(a) Show the karaka relations that can be obtained by vibhakti informa-

(b) Show by dotted lines the relations that can be obtained by karaka

CHAPTER 5. PANINIAN GRAMMAR

tion, i.e., karaka charts.

sharing rules, verb-verb relation rule, etc.

(c) List the rules that you have used in (b) above.

1.

usane bacce ko pustaka paDhane ke liye kahaa.
he-ne child acc. book to-read -ke-liye asked
(He asked the child to read the book.)

. usane beiThe hue bacce ko pustaka paDhane ke liye

he-ne seated child acc. book to-read -ke-liye

kahaa.
asked
(He asked the seated child to read the book.)

. usane beiThe hue bacce ko pustaka paDhane ke liye

he-ne seated child acc. book to-read -ke-liye

kahanaa caahaa.
to-ask wanted
(He wanted to ask the seated child to read the book.)

. usane beiThate hue bacce ko pustaka paDhane ke liye

he-ne was sitting child acc. book to-read -ke-liye

kahaa.

asked

(He asked the child who was in the process of sitting
to read a book.)

. usane bacce ko pustaka paDhane ke liye biThaayaa

he-ne child acc. book to-read -ke-liye cause to sit
(He made the child sit to read the book.) %v2 }

. use beiThakara bacce kaa pustaka paDhanaa acchaa

he having-sat down child gen. book reading good

nahiiM 1lagaa.

not like

(He did not like the child reading a book having sat
down.)

. use bacce kaa beiThakara pustaka paDhanaa acchaa

he cild gen. having-satdown book reading good

5.7. SUMMARY 83

nahiiM 1lagaa.

not like

(He did not like the child reading a book having
sat down.)

5.10 In case of multiple parses (obtained by your rules) in the above exer-
cise, mark the preferred parse, if any. In each case indicate what information
can be used to obtain the preferred parse mechanically.

5.11 Define karaka charts for the verbs in sentences in Exercise 2.1. Are
you able to derive the structures for the sentences using karaka charts and
karaka transformation rules?

5.12 Karaka charts described here specify for each karaka, the vibhakti
required and whether mandatory or not. If we consider verbs like ‘kaha’
(say), their argument (karma karaka) is a sentence and not just a nominal.
Moreover, the argument occurs to the right of the verb and not to the left.

Provide for specification of these informations in the karaka chart. Give
the karaka chart for ‘kaha’ (say) in the extended form that includes these
informations.

84

CHAPTER 5. PANINIAN GRAMMAR

Chapter 6

Paninian Parser

6.1 Introduction

In this chapter, we discuss how a parser can be built using the Paninian
framework. It turns out that the Paninian theory is extremely suitable
from the computational viewpoint. This is so partly because the goal of the
Paninian theory matches with the goal of NLP of extracting meaning from
an utterance. The theory can be used in a natural manner for structuring
a parser which is extremely efficient.

The first part of the parser must take care of morphology. For each
word in the input sentence, a dictionary or a lexicon needs to be looked up,
and associated grammatical information needs to be retrieved. The words
have to be grouped together yielding nominals, verbals etc. Finally, the
karaka relations among the elements have to be identified. This is shown
in Figure 6.1 (repeated from Chap. 2).

The parser is based on information theoretic considerations where at
each stage of processing, just the right amount of information is extracted.
At the morphological analysis stage, information available from word forms
is obtained. For example, information about gender number, person is
obtained (wherever possible) from the nouns. On the other hand, for verbs
in Hindi, gender number person (gnp) and part of TAM is obtained from
the words. In case of Telugu verbs, the complete TAM label, besides gnp
is obtained as well.

In the local word grouping stage, words combine into groups (noun
groups and verb groups) based on local information. The groups are formed
with minimal computational effort (finite state machine model) as only local
information is used. On the other hand, local word grouping brings together
just the right information (vibhakti for nouns, TAM labels for verbs) that is
needed for the next stage of processing (that is, for karaka assignment). It

85

86 CHAPTER 6. PANINIAN PARSER

sentence -—
|
v
[—————————— \ e +
lactive lexicon|-———- >|morphological analyzer|
\——— / e e L e +

words | with associated
grammatical | information

[\ o +
|verb form chart|----- > |local word grouperl|
\—————— / o +
words| groups -——
[\ o +
|karaka chart & |-———> | core parser |
|lakshan charts | | |
\——— e / Fom e +

parse | structure --—-
v

Figure 6.1: Structure of the Parser

surface level

vibhakti level

karaka level

6.2. CORE PARSER 87

does not attempt to distinguish all the fine shades of meaning, for example,
temporal structure or modality. For one thing, such information cannot
easily be determined at this stage of processing. Secondly, it is not needed
for the next stage.

As mentioned earlier, the output of the local word grouper roughly
corresponds to the vibhakti level. However, in those few cases where there
is ambiguity in identifying the local word groups and the ambiguity cannot
be resolved at that level, the decision is postponed. For example, in Hindi,
a word that can be both a noun and an adjective, causes ambiguity in
forming a local word group with its succeeding noun. The choice can only
be made later during karaka assignment using karaka charts. As a result,
in our information theoretic parser, such a choice is delayed to the point
when it can be made. Similar is the case with a noun that is followed by a
marker kaa , ke or kii and succeeded by a noun as in:

ladake kii kitaaba
boy ’s book

After the local word grouping stage, there is karaka assignment and
lexical disambiguation stage. This is done next because the necessary in-
formation (vibhakti) for doing it is available. Other phenomena such as
quantifiers and anaphora are not handled at this stage, because informa-
tion for resolving them is not available.

This approach is consistent with the Indian grammatical analysis where
meaning is extracted in several layers with increasing precision.

6.2 Core Parser

Given the local word groups in a sentence, the task of the core parser is
two-fold:

1. To identify karaka relations among word groups,
2. To identify senses of words.

The first task requires knowledge of karaka-vibhakti mapping, optionality
of karakas, and transformation rules. The second task requires lakshan
charts for nouns and verbs, which will be discussed later.

A data structure called karaka chart stores information about karaka-
vibhakti mapping and optionality of karakas for each of the verb groups in
a sentence. Initially, the default karaka chart is loaded into a karaka chart
for a given verb group in the sentence. Transformation is performed using
the TAM label. There is a separate karaka chart for each verb group in the
sentence being processed.

88 CHAPTER 6. PANINIAN PARSER

Karaka Vibhakti Presence
Karta ¢ mandatory
Karma ko or ¢ mandatory
Karana se or dvaaraa optional

Figure 6.2: Default karaka chart for ‘khaa rakhaa’

An example default karaka chart for khaa (eat) is given in Figure 6.2
(repeated from chapter 5). It shows for each of the karakas its necessity
(mandatory, desirable, or optional), and vibhakti.

For a given sentence after the word groups have been formed, karaka
charts for the verb groups are created and each of the noun groups is tested
against the karaka restrictions in each karaka chart (provided the noun
group is to the left of the verb group whose karaka chart is being tested).
When testing a noun group against a karaka restriction of a verb group,
vibhakti information is checked, and if found satisfactory, the noun group
becomes a candidate for the karaka of the verb group. This can be shown in
the form of a constraint graph. Nodes of the graph are the word groups and
there is an arc from a verb group to a noun group labelled by a karaka, if the
noun group satisfies the karaka restriction in the karaka chart of the verb
group. (There is an arc from one verb group to another, if the karaka chart
of the former has a karaka restriction with lexical type as verb or sentence.)
The verb groups are called demand groups as they make demands about
their karakas, and the noun groups are called source groups because they
satisfy demands. (A verb group can be a source group as well when it
satisfies the demand of another verb group. This, however, does not affect
its status as a demand group as well.)

As an example, consider a sentence containing the verb khaa (eat):

S.1 baccaa haatha se kelaa khaataa hei.
child hand -se banana eats
(The child eats the banana with his hand.)

Its word groups are marked and khaa (eat) has the same karaka chart as
in Figure 6.1. Its constraint graph is shown in Figure 6.3.

6.2. CORE PARSER

karma
(karta,
baccaa haatha se kelaa khaataa hei
kartharma

karana

Figure 6.3: Constraint graph for sentence S.1

6.2.1 Constraints

A parse is a sub-graph of the constraint graph containing all the nodes of
the constraint graph and satisfying the following conditions (corresponding
to those in Sec. 5.4.):

C1. For each of the mandatory karakas in a karaka chart for each de-
mand group, there should be ezactly one outgoing edge labelled by
the karaka from the demand group.

C2. For each of the desirable or optional karakas in a karaka chart for each
demand group, there should be at most one outgoing edge labelled
by the karaka from the demand group.

C3. There should be ezactly one incoming arc into each source group.

If several sub-graphs of a constraint graph satisfy the above conditions,
it means that there are multiple parses and the sentence is ambiguous. If
no sub-graph satisfies the above constraints, the sentence does not have a
parse, and is probably ill-formed. A parse is also called a solution graph.

Consider the example constraint graph in Figure 6.3. There are two
outgoing arcs labelled by karta from ‘khaataa hei’. Constraint C1 says that
exactly one of the arcs must be selected to be in a solution graph. Similarly,
for arcs labelled by karma karaka. However, constraint C3 states that arcs
labelled by karta and karma must not be incident on the same noun. They
must be incident differently on baccaa (boy) and kelaa (banana). The
arc labelled by karana is optional and is to be retained only if necessary
because of constraint C3. In this case, it turns out to be necessary because

89

90 CHAPTER 6. PANINIAN PARSER

baccaa haatha se kelaa khaataa hei
Kkarana\ karma ; gj
karta,

(a) A solution graph (corresponding to the meaning: child eats banana)

karma

(karta

baccaa haatha se kelaa khaataa hei

karana\ /

(b) Another solution graph (corresponding to the meaning: banana eats
child)

Figure 6.4: Solution graphs for sentence S.1

otherwise ‘haatha se’ would have no incoming arc, a violation of constraint
C3. Figure 6.4 shows the two possible parses for the constraint graph.

There are similarities between dependency grammars and Paninian gram-
mar (PG) because such constraint graphs are also produced by dependency
grammars (Covington, 1990) (Kashket, 1986) (Hudson, 1994). Paninian
grammar differs from them in two ways. First, the Paninian framework
uses the linguistic insight regarding karaka relations to identify relations
between constituents in a sentence. Second, the constraints are sufficiently
restricted that they reduce to well known bipartite graph matching prob-
lems for which efficient solutions are known. These will be described later.

6.3. CONSTRAINT PARSER USING INTEGER PROGRAMMING 91

6.3 Constraint Parser Using Integer Program-
ming

A parse can be obtained from the constraint graph using integer program-
ming. A constraint graph is converted into an integer programming problem
by introducing a variable x for an arc from node i to j labelled by karaka
k in the constraint graph such that for every arc there is a variable. The
variables take their values as 0 or 1. A parse is an assignment of 1 to those
variables whose corresponding arcs are in the parse sub-graph, and 0 to
those that are not. Equality and inequality constraints in integer program-
ming problem can be obtained from the conditions (C1, C2, and C3) listed
earlier, as follows respectively:

1. For each demand group i, for each of its mandatory karakas k, the
following equalities must hold:

Mi,k : E Tik,j = 1
J

Note that M; ; stands for the equation formed, given a demand word i
and karaka k. Thus, there will be as many equations as combinations
of i and k.

2. For each demand group i, for each of its optional or desirable karakas
k, the following inequalities must hold:

O : Ziﬂi,k,j <1
J

3. For each of the source groups j, the following equalities must hold:

Si: Y wikg =1
ik

Thus, there will be as many equations as there are source words.

The cost function to be minimized is given as the sum of all the variables.

We illustrate this by forming inequalities etc. for the example sentence
S.1 (using Figure 6.3). To keep the notation compact, we introduce ab-
breviations for karakas given in Fig. 6.5. Word groups in sentence S.1 are
referred to by (a, b, ¢, A):

baccaa haatha se kelaa khaataa hei.
child hand —-se banana eats
a b [A

92 CHAPTER 6. PANINIAN PARSER

Abbreviation Karaka

k1l Karta
k2 Karma
k3 Karana

Figure 6.5: Abbreviations for the karakas

Constraint C1 generates the following equalities (for mandatory karakas
k1 and k2):
Mag :TAkl,e +TAkl,e =1
Mago : Tak2,a +Tak2,e =1

Constraint C2 generates:

Oaks Tarsp <1

Finally, for C3 we have:

So : TAkl,a T TA k2,0 = 1
Sp:Taksp =1
Se: TAkl,e T TAk2,c = 1

For ease of readability, we rename x’s as follows:

TAkl,a = Y1
TAkl,e = Y2
TA k2,0 = Y3
TAk2,c = Ya
TAK3b =UYs

Now, we get

Mag:y1 +y2=1
Mapgo:ys+ys=1
Oaps:ys <1
Seiyrtys=1
Spiys =1

6.4. CONSTRAINT PARSER USING MATCHING AND ASSIGNMENT93

Sc:y2+y4:1

The cost function to be minimised is:

Cost=1y1 +y2+ys +ys +ys

If we solve the above, we get the following solutions:

y=Lys=Lys =1

(same as in Figure 6.4(a)), and

y2=Lys=1Lys =1
(same as in Figure 6.4(b)).

6.4 Constraint Parser Using Matching and
Assignment

With the constraints (C1, C2 and C3) specified above, the parsing problem
reduces to bipartite graph matching and assignment problems. These have
efficient solutions even in the worst case.

First, let us consider a constraint graph which does not have any op-
tional karaka. We can reduce the constraint graph to a bipartite graph.
Finding a solution graph to the constraint graph reduces to finding a max-
imal matching in the bipartite graph.

6.4.1 Reduction to Bipartite Graph Matching
A bipartite graph G(V,U,E) is defined as:

U: set of nodes uy,us, ..., Uy
V: set of nodes vy, vs, ..., Um
E: edges between U and V, and UNV = ¢.

To perform the reduction of the problem of finding a solution graph to
finding a matching, we first construct the bipartite graph. The bipartite
graph is constructed in three stages:

1. For every source node s in the constraint graph, form a node s in U.

2. For every demand node d in the constraint graph and every manda-
tory karaka k in the karaka chart for d, form a node v in V. (Thus,
for every pair (d,k) there is a node in V.)

94 CHAPTER 6. PANINIAN PARSER

3. For every edge (d,s) labelled by karaka k in the constraint graph,
create an edge between node (d,k) in V to s in U

For example, for the constraint graph in Figure 6.3 (but assuming that the
optional karana karaka is mandatory) we have the bipartite graph in Figure
6.6.

(150.79959,—9.47221)(219.%%%%?5510.72221)(150.7995%{-}?.41221 (21%)%6
aataa hei, karta

?3,—49.23828) (150.79959,-45.48828)(219.08623,-10

L]
a A, k1
kelaa (khaataa hei, karma)
L]
c A, k2

haatha se o

b A, k3

Figure 6.6: Bipartite graph for constraint graph in Figure 6.3

A matching M of a bipartite graph G = (U,V, E) is a subset of edges
with the property that no edges of M share the same node. The matching
problem is to find a mazimal matching of G, that is, a matching with the
largest number of edges. A maximal matching is called a complete matching,
if every node in U and V has an edge.

There are two maximal complete matchings of the graph in Figure 6.6.
They are shown in Figure 6.7. They correspond to the parses shown in
Figure 6.4.

. (khaataa hei, karana)

150.79959,-9.47221)(219.08623,-10.72221)(150.79959,-45.48828)(219.08623,-49.23828) (150.79959,-81.50435) (219.08623,-8
(I accaa I , (khaataa hzzg, karta?))
a Akl
kelaa | . (khaataa hei, karma)
¢ A K2

haatha se o

b A, k3

(a) Solution corresponds to parse in Figure 6.4(a)

. (khaataa hei, karana)

6.4. CONSTRAINT PARSER USING MATCHING AND ASSIGNMENT95

150.79959,-9.47221)(219.08623,-49.23828) (150. -45.48828)(219.08623,-10.72221)(150. -81. . -8
(,)(219.08623,-49.23828) (150 79959(khgat%§ gg}g 19.08623,-10.72221)(150.79959,-81.50435) (219.08623,-8

[]
a Akl
kelaa | (khaataa hei, karma)
[]
c A, k2

haatha se
[]

b . (khaataa hei, karana)

A, k3

(b) Solution corresponds to parse in Figure 6.4(b)

Figure 6.7: Maximal (complete) matchings of bipartite graph of Figure 6.6.

Now we show that finding a maximal matching in a bipartite graph is
the same as finding a parse in a constraint graph. Let M be a maximal
matching of a bipartite graph G. If M is complete, it represents a parse.
The proof is easy. For an edge between a node (d,k) in V and a node S
in U, it represents the demand for karaka k of the demand node d being
satisfied by the source node s. Since all the nodes in V have exactly one
edge in M, the original constraint C1 is satisfied. Since all the nodes in U
have exactly one edge in M, constraint C3 is satisfied. (And since there are
no optional karakas, C2 is satisfied trivially.)

If M is not complete, that is, it does not have an edge on at least one
node in U or V, then G does not have a parse. If a node in V does not
have an edge, it is a violation of constraint C1, otherwise, it is a violation of
constraint C3. Therefore, M is not a parse. Let the cardinality of M be m.
Clearly |U| > m or |V| > m. Since M is a maximal matching, there is no
matching on G with larger number of edges. Therefore, any other maximal
matching (which might choose a different set of edges) will cover exactly m
nodes in U and m nodes in V. Consequently, some node in U or V would
again not have an edge. Thus, any other maximal matching would also not
give us a parse.

The converse has been left as an exercise.

To find a maximal matching of a bipartite graph, there is the well-
known augmenting path algorithm. (See Papadimitrou (1982) or Ahuja et
al. (1993) for a description.) !

1The fastest known algorithm has asymptotic time complexity of O(|V|'/2.|E|) and
is based on max flow problem (Hopcroft and Karp (1973)). The reduction itself can be
carried out in linear time on number of nodes and edges.

96 CHAPTER 6. PANINIAN PARSER

6.4.2 Reduction to Assignment Problem

In the last section, we saw that if all our karakas are mandatory karakas,
the problem of finding a parse reduces to finding a maximal matching in a
bipartite graph.

If we permit optional karakas, the problem still has an efficient solution.
It now reduces to finding a matching which has the maximal weight in the
weighted matching problem. To perform the reduction, we need to form a
weighted bipartite graph. We first form a bipartite graph exactly as before.
Next the edges are weighted by assigning a weight of 1 if the edge is from a
node in V representing a mandatory karaka and 0 if optional karaka. The
problem now is to find the maximal matching (or assignment) that has
the maximum weight (called the mazimum bipartite matching problem or
assignment problem). The resulting matching represents a valid parse if
the matching covers all nodes in U and covers those nodes in V that are
for mandatory karakas. (The maximal weight condition ensures that all
edges from nodes in V representing mandatory karakas are selected first, if
possible.) This problem has a known solution by the Hungarian method of
time complexity O(n?®) arithmetic operations (Kuhn, 1955).

Note that in the above theory we have made the following assumptions:
(a) Each word group is uniquely identifiable before the core parser executes,
(b) Each demand word has only one karaka chart, and (c) There are no
ambiguities between source word and demand word. Empirical data for
Indian languages shows that, conditions (a) and (b) hold. Condition (c),
however, does not always hold for certain Indian languages, as shown by
a corpus. Even though there are many exceptions to this condition, they
still produce only a small number of such ambiguities or clashes. Therefore,
for each possible demand group and source group clash, a new constraint
graph can be produced and solved, leaving the polynomial time complexity
unchanged.

6.5 Preferences over Parses

World knowledge can also be used during parsing. But the question is, what
kind of world knowledge should be used? Such knowledge explodes in size
very fast, and is difficult to use during parsing (or processing). One answer
is to use semantic types of fillers of karaka roles, but to limit it to that
necessary for removing ambiguity, if any, in karaka assignment. In other
words, for a given verb, when karaka-vibhakti mapping is not sufficient
for producing an unambiguous parse, semantic types are included. The
semantic types so included have the sole-purpose of karaka disambiguation.
This keeps the number of semantic types under control, and serves as a
guiding philosophy for what semantic types to include. Figure 6.8 shows

6.5. PREFERENCES OVER PARSES 97

the starting semantic type hierarchy which is sufficient for a major part of
language.

(89.564,56.9055)(53.67091,0)(89.564,56.9055)(157.46129,0)
inanimate animate

(53.6709,56.9055)(14.86115,0)(53.6709,56.9055)(82.75842,0)
human non-human

Figure 6.8: Semantic type hierarchy

Sometimes we have constraints which normally hold but sometimes can
be over-ridden. These preference constraints can be used to order the parses
produced by the parser. If we do so, we see those parses first which satisfy
the preference constraint. However, if a parse does not satisfy the preference
constraints, it is still produced, but only later.

Preferences over parses can be specified by suitably varying the cost
function in the integer programming problem. If we use such a cost func-
tion, we will get a parse that has a minimum cost with respect to the cost
function. The integer programming system can be so set up that we can
ask for the next solution, in which case, we will get another parse with the
same or higher cost. This can be repeated to obtain all the possible parses.

Some reasonable preferences which can be incorporated in the cost func-
tion are as follows: All else being equal,

1. Karta has the following preferences in descending order: human, non-
human, inanimate (animacy preference).

2. A source group is close to the demand group with which it has a
relationship. (closeness preference)

3. Karta occurs before karma in a sentence (leftness preference).

To the above list can be added a host of conditions dealing with anaphora,
movement, garden-path sentences, etc.

98 CHAPTER 6. PANINIAN PARSER

6.6 Lakshan Charts for Sense Disambigua-
tion

The second major task to be accomplished by the core parser is disam-
biguation of word senses. This requires the preparation of lakshan charts
(or discrimination nets) for nouns and verbs.

A lakshan chart for a verb allows us to identify the sense of the verb
in a sentence given its parse. Lakshan charts make use of the karakas of
the verb in the sentence, for determining the verb sense. For example, in
sentences J.1 and J.2 the verb ‘jotataa hei’ is used in two different senses:
plough and attach.

J.1 kisaana kheta ko jotataa hei.
farmer land -ko ploughs
(The farmer ploughs the land.)

J.2 kisaana gaadii ko jotataa hei.
farmer cart -ko attache
(The farmer attaches the cart.)

J.3 kisaana Kkheta ko kaaTataa hei.
farmer crops -ko harvests
(The farmer harvests the crops.)

Lakshan chart for ‘jota’ would allow us to select the appropriate sense of
jota by testing whether its karma is land or cart etc. Again, it is designed
from an information theoretic point of view. The available information is
used in an economical and efficient manner in deducing the right amount
of new information.

A verb lakshan chart for a verb is prepared by linguists and language
experts by looking up different senses of the verb with the help of conven-
tional dictionaries. The chart builder must carefully select features that
would allow verb sense to be obtained.

Noun lakshan charts help disambiguate senses of nouns in a sentence.
They make use of the parse structure (i.e., karaka relations) and the verb
sense. For example, in sentences J.1 and J.3, the sense of kheta is land and
crop, respectively. However, depending on the verb of which it is a karma,
the appropriate sense is selected.

Preparation of lakshan charts is a laborious process but is essential for
machine translation. Linguistic theories are generally silent on the issue of
word sense disambiguation.

6.7. SUMMARY 99

6.7 Summary

The Paninian framework turns out to be elegant as well as natural and
efficient. It is elegant because it is able to handle diverse phenomena like
karaka assignment, active-passives, and control in a unified manner. It is
efficient because the constraint parser which arises very naturally using the
framework is extremely fast.

Further Reading

The parsing scheme by integer programming described here was earlier
discussed in Bharati et al. (1990). Reduction to matching problem in
bipartite graph is discussed in Bharati et al. (1993a).

For further details on complexity analysis of parsing algorithms of the
constraint parser described here see Perraju (1992). Ravisankar (1991) dis-
cusses different ways that the integer programming problem can be formu-
lated to obtain various parses in preferential order. Bharati et al. (1990a)
discuss relationship between NLP, complexity theory and mathematical
logic.

Exercises

6.1 Show the constraint graph and solution graph(s) for each of the fol-
lowing sentences in Hindi:

raama phala khaakara mohana ko bulaataa hei.
Ram fruit having-eaten Mohan -ko calls is
(Having eaten fruit, Ram calls Mohan.)

raama ne phala kaaTakara khaayaa.
Ram ne fruit having-cut ate
(Ram ate having cut the fruit.)

phala kaaTane ke liye usane caakuu 1liyaa.
fruit to-cut -ke-liye he-ne knife took
(To cut fruit, he took a knife.)

6.2 Show the constraint graph and solution graph(s) for each of the fol-
lowing sentences in Hindi:

shikaarii ne bhaagaate hue shera ko dekhaa.
hunter -ne while-running 1lion -ko saw
(The hunter saw a lion while running.)

raama ne haatha se chiilkara kelaa khaate hue
Ram -ne hands -se having-peeled banana eating

100 CHAPTER 6. PANINIAN PARSER

bandara ko dekhaa.

monkey -ko saw.

(Ram saw a monkey eating a banana having peeled it with
his hand.)

6.3 Form integer programming problem for the sentences in Exercise 6.1.
6.4 Form integer programming problem for the sentences in Exercise 6.2.

6.5 Prove the converse (of the theorem proved in Sec. 6.4.1) that if a
constraint graph (with no optional karaka) has a parse, there is a maximal
matching covering all the nodes in its bipartite graph, and if it does not
have a parse there is no matching covering all the nodes in the bipartite
graph.

6.6 Incorporate the preferences described in Sec. 6.5 in the cost function
of integer programming problem. In other words, design the cost function
in such a way that a solution satisfying the above preferences is produced
before another which does not satisfy the preferences.

6.7 (Open problem) Suppose the solution graph must satisfy an additional
constraint, called nesting constraint defined as follows:

Definition (Nesting constraint): If the nodes of the solution graph
are placed on a straight edge of a semi-infinite plane in the order of their
occurrence in the sentence, the edges can be drawn without crossing each
other.

What is the complexity of finding a solution graph that satisfies the
above constraint besides the usual constraints (C.1, C.2 and C.3).

Chapter 7

Machine Translation

7.1 Survey

7.1.1 Introduction

You feed a story written in Oriya into a computer system and out comes its
translation in Hindi, Tamil, English and other languages. It is inexpensive,
immediate and simultaneous. The language barriers melt away. The rich-
ness of other literatures opens up to everyone. The world is intellectually
and culturally united into one. This is the dream of people working in a
fascinating area of research called Machine Translation (MT).

Although the above goal is far from realization, the first signs of limited
success are apparent. In fact, the first faltering steps in MT were taken
in the 1950s and 1960s. But at that time, formal liguistics and artificial
intelligence had barely been born, and computer science was in its infancy.
As a result, the efforts “failed” to achieve success.

7.1.2 Problems of Machine Translation

What makes the MT task so dificult? It was believed at one time that all
that was required for MT was a bilingual dictionary and rules for reordering
words in a sentence. For example, to translate the following sentence from
Hindi to English:

raama ne kheta jotaa.
(noun) (noun) (verb)
Ram ploughed the field

(n) (v) (n)

the Hindi words are replaced by English equivalents and reordered to fol-
low the sequence non-verb-noun instead of noun-noun-verb. Unfortunately,

101

102 CHAPTER 7. MACHINE TRANSLATION

this naive method fails to work generally. A number of difficult problems
come in the way, like word sense selection, choice of sentence structure, pro-
noun reference, noun-noun modification, conjunctions like ‘and’ and ‘or’,
identification of tense and modality, etc. We will see some of these below.
Each word has many different meanings or senses. Selection of the ap-
propriate sense is necessary for translation. For example, consider another
sentence in Hindi in which ‘jotaa’ has a different sense than ‘plough’:

raama ne gaaDii jotii.
Ram prepared the cart.

or

raama ne ghoDaa jotaa
Ram harnessed the horse.

Thus ‘jotaa’ can be replaced by ‘plough’, ‘prepare’ or ‘harness’ depending on
the sense implied in the sentence. The correct sense must first be identified
for each of the words before selecting the appropriate replacement.

The sentence structure must also be interpreted correctly for translation.
For example, in

I saw Ramesh on the hill with the telescope.

The telescope could have been the instrument of seeing, or Ramesh could
have been carrying the telescope, or it is the hill with the telescope. The
three translation are different in Hindi:

Meine duurbiina dwaaraa Ramesh ko pahaaDii par dekhaa.
Meine Ramesh ko duurbiina ke saath pahaaDii par dekhaa.
Meine Ramesh ko duurbiina waalii pahaaDii par dekhaa.

Hence, it would be important to identify the relationship of the telescope
correctly (called the sentence structure). Such identifications might require
following a paragraph and maintaining a context.

Frequently, it is important to find the referent of the pronoun. Consider
the following sentences for example:

A dog saw a cow on the road.
It started barking on seeing it.

The first ‘it’ can refer to a dog, cow or road. If one were translating into
Hindi, the gender of the verb would depend on the gender of the referent:

vaha use dekhakara bhounkane lagaa.

If ‘vaha’ was referring to the cow or the road, feminine would be used.

It may sound ridiculous to even consider that the road can bark, or it
may seem obvious that it is the dog which barks. However, reaching such
conclusions requires more than just word replacement ability.

7.1. SURVEY 103

The problems described above point to a common theme: A sentence
must be “understood” (at least partially) before it can be translated.

Natural language understanding is a hard task because it requires for-
mulating not only a grammar for the language but also using background
knowledge including common sense knowledge. All this must be used in
complex and as yet unknown ways to process a given text.

7.1.3 Is MT Possible?

The difficulty of the task makes it clear that literature and poetry are
beyond MT in the foreseeable future. Legal texts which are carefully drafted
to avoid ambiguity and unwanted implications might also be beyond the
ambit of MT. Jokes and other material which rely on conveying double
meaning are also not good candidates for MT at present.

Are there any task domains where MT is applicable? While definitive
statement cannot be made, it seems that the task domains are rather nar-
row. At first sight it appears that circulars, official communication, minutes
of meetings, technical literature including scientific papers, manuals etc. are
applications that can be handled by MT. These texts have limited vocabu-
lory and fixed styles. Their audience is not very large. Many of such texts
have a short life. Circulars and minutes of meetings are used intensively
for a short period of time, and then filed and forgotten. They are also con-
sidered uninteresting by human translators. Because of the above reasons,
these texts are ideal candidates for MT. However, there are no practical
automatic systems for translation other than one system in the domain of
meteorological forecasts.

So far we have discussed MT as a fully automatic system requiring
no human intervention. There are other possibilities as well. One can
have human aided machine translation. The human (translator) could pre-
edit the text in the source language paraphrasing the difficult sentence
constructions so that the computer can understand it, or aid the computer
during the translation process when it has a difficulty it cannot handle, or
post-edit the generated text in the target language. The MT system should
be viewed as a tool provided to the human translator.

Most MT systems present today require post-editing. Note that if the
MT systems become reasonably good, the post editor needs to know only
one language.

7.1.4 Brief History

The history of MT can be traced starting from the early 50s when it was
realized that computers could be used for translation. In the US, a large
number of research groups sprang up to work on the task (usually Russian

104 CHAPTER 7. MACHINE TRANSLATION

to English), with funding from defence and intelligence establishments. In
the USSR, there was a similar effort to translate from English and French
to Russian.

As mentioned earlier, most of this work based itself on bilingual dictio-
nary lookup. The developers quickly started realizing that far more was
needed. But unfortunately, in their enthusiasm and optimism during the
early days, they had proclaimed that MT systems were around the corner,
and that the MT systems would be capable of producing high-quality trans-
lations for general texts without any human intervention. Thus in the US,
when a committee called ALPAC was set up to evaluate the MT research,
it easily came to the conclusion that research had failed to live up to its
promises. It said in its report in 1966 that basic research was needed and
MT was not feasible in the foreseeable future.

The ALPAC report rang the death knell of MT efforts in the US at that
time. All funding ceased, the research groups disintegrated, and the field
went in disrepute. The fate of MT in Europe and the USSR did not change
so dramatically. It was generally recognized, however, that it was a field
whose time had not yet come. Only a few research groups continued to
remain active.

The field revived in the late 70s after the successful completion of the
TAUM-METEO system in Canada in 1977. It translates the Canadian
weather forecasts from English to French. Around the same time other sys-
tems like Titus (English to French for textile technology), CULT (Chinese
to English for Mathematics and Physics journals), etc. were also developed.

In the 80s, the Japanese successfully completed a national project (Mu)
on MT between English and Japanese. The European Community has also
undertaken an ambitious project called Eurotra covering all the languages
of the Community. Work has also been undertaken by groups in France,
Germany, Switzerland, the US and India.

7.1.5 Possible Approaches

There are three major types of MT systems that one can imagine based on
their dependence on languages. The first type of MT systems are designed
for a particular pair of languages. If translation capability is needed between
another pair of languages, a new system must be constructed. Because of
its dependence on the languages, the system has the advantage that special
features and similarities between the concerned languages can be made use
of. It is called the direct approach.

The second type of system is based on the concept of interlingua. A
sentence in a source language is first analyzed and is represented in an inter-
mediate language. The intermediate language need not be a human “nat-
ural” language and is typically a formal “mathematical” language. Next a

7.1. SURVEY 105

generator takes the intermediate representation and generates a sentence
in the target language. The major advantage of this approach is that the
analyzer of parser for the source language is independent of the generator
for the target language. As a result, if one wants to build a system with
translation capability amonge, say, 15 languages, only 15 parsers and gen-
erators need to be constructed. Contrast it with 210 (=15x14) systems that
need to be constructed in the first approach.

The difficulty with the second approach, however, is that it is difficult
to define the interlingua. Also, it is not possible to take advantage of
similarities between languages. As a result, many research groups use a
third approach called the transfer approach. In this approach, the parser
produces the representation for a source language, which is then transfered
to the representation for the target language. The generator takes over
from there. This approach is intermediate between the first two. For 15
languages, in this approach only 15 parsers and generators are needed,
however, the number of transfer components needed are 210.

In the Indian context where there are a large number of languages (of-
ficially 15 major ones) which are also very close, the interlingua approach
would seem preferable, but the nature of interlingua is open.

7.1.6 Current Status

Currently the field is going through a phase of vigorous activity. The
Japanese National Project (Mu) successfully completed resulting in an in-
dustrial prototype. Work has already started on a major development ef-
fort. Eurotra project in Europe has hundreds of researchers working on it.
It uses the transfer approach in which a tree representation of a source lan-
guages sentence is obtained by a series of steps involving formal grammars
and well formedness fiters. This representation is transformed to another
tree structure using the transfer component, and forms the basis for gener-
ation. A number of other research groups are also active in Europe.

India too has active groups in MT. The earliest published work was
undertaken by Chakraborty in 1966. More recently, work has been under-
taken in Tamil University Thanjavur, National Centre for Software Tech-
nology (NCST) Bombay, Centre for Development of Advanced Computing
(C-DAC) Pune, and IIT Kanpur. Research group at Thanjavur attempted
Russian to Tamil translation based on the direct approach in 1985 and the
first system translated simple sentences. A group at NCST did some work
on English to Hindi translation but did not develop a working system. The
group at C-DAC did some preliminary work on MT, but has lately been
concentrating on processing of Sanskrit. The IIT Kanpur effort by (Ak-
shar Bharati group) is the most comprehensive and is focusing on Indian
languages. It has applied the principles of Indian traditional grammar (San-

106 CHAPTER 7. MACHINE TRANSLATION

skrit vyakarana) to modern Indian languages. University of Hyderabad is
an important centre starting work on computational linguistics and MT.

The MT systems will have to fit in an organization. Instead of re-
placing people, they will complement them. There can be other fallouts
from the MT effort. At an intellectual level, it can give a big boost to
the traditional Sanskrit vyakaran studies, linguistics and artificial intelli-
gence disciplines. These will grow to new heights borrowing from one an-
other. At the practical level, one can imagine a number of computer based
products. For example, language assistant (a system that corrects gram-
matical mistakes), computer assisted language instruction (which includes
various lessons including comprehension tests for language teaching), nat-
ural language interfaces to computers (so that one can communicate with
computers using language) etc. The marriage of speech processing work
with natural language processing has the potential of producing computer
systems that can listen and talk. If the optical character recognition tech-
nology is also combined, it can lead to systems that can read out books (to
the blind, for example).

Work for Indian languages will have to be done mainly by Indians. We
are also the best equipped to do it. The problems are challenging and the
potential immense. What is needed is a national will and a national effort.

7.2 Anusaraka or Language Accessor

It is possible to overcome the language barrier in India today using
anusaraka. Anusaraka tries to take advantage of the relative strengths of
the computer and the human reader, where the computer takes the language
load and leaves the world knowledge load on the reader. It is particularly
effective when the languages are close, as is the case with Indian languages.
Keeping in line with the anusaraka philosophy, it bridges the gap between
languages by chosing the most appropriate or nearest construction available
in the target language together with suitable additional notation.

It is argued in this section that there are only three major differences in
the south Indian languages and Hindi. All these can be bridged by simple
additional notation in Hindi. The resulting language can be viewed as a
southern dialect of Hindi. Anusaraka uses this dialect to make source text
in southern languages accessible to Hindi readers.

14 Pronounced as anusaaraka.

7.2. ANUSARAKA OR LANGUAGE ACCESSOR 107

7.2.1 Background

The problem being addressed here is how to overcome the language barrier
in India. Fully-automatic general-purpose high-quality machine transla-
tion systems (FGH-MT for short) are extremely difficult to build. There
are no existing translation systems for any pair of languages in the world
that qualify to be called FGH-MT. The difficulty arises from the following
reasons:

1. In any natural language text, only part of the information to be con-
veyed is explicitly expressed and it is the human mind which fills up
the details by using the world knowledge. The basic reason for this
state of affairs is that the concepts and shades which a natural lan-
guage purports to describe form a continuum and the number of lexi-
cal items available are finite, so necessarily they have to be overloaded
and it is only because of the total context and shared background un-
derstanding that we are able to disambiguate them and are able to
communicate.

2. Different natural languages adopt different conventions about the type
and amount of information to be used. The reasons for this may
be: the history of language development (differing tastes, arbitrary
choices made in the long history of language, presence of other lan-
guages and mixing with them, etc.) and the envisaged primary func-
tion of the language etc.

The net result of this is that unless we provide machines with knowledge
and inferring capability comparable to human beings FGH-MT will not be
feasible. It will not be an exaggeration to say that inspite of tremendous
progress in computer technology (mainly in terms of speed, memory and
programming environments) FGH-MT remains a distant dream.

7.2.2 Cutting the Gordian Knot

In spite of the difficulty of FGH-MT, it can be claimed that with the help
of machines, the language barrier can be overcome today. If this sounds
paradoxical let us consider an analogy. Scientists even today are struggling
to build a machine that can walk like a human, avoiding obstacles to reach
a destination. At the same time, we have been successfully using rail trans-
port for more than a century. The distance barrier has been overcome even
without the machines learning to walk.

True, for this we have had to lay railway tracks all over the country;
build bridges across rivers; dig tunnels through mountains and build a
huge infra-structure to make the whole thing feasible. Even then it delivers
the goods and passengers at only the railway stations; we need separate

108 CHAPTER 7. MACHINE TRANSLATION

arrangements to get the things and persons at home! But all said and
done, it does enable us to overcome the distance barrier.

If FGH-MT is like the walking machine, what is the counterpart to the
railway locomotive? The answer lies in separating language-based analysis
of text, from knowledge and inference-based analysis. The former task is
left to the machine, and the latter task to the human reader because of
their proficiency for the respective tasks. We also relax the requirement
that the output be grammatical. We do require, however, that the output
be comprehensible. Apart from the effort to build appropriate multilin-
gual databases from a computational viewpoint, creative ideas are needed
to establish language bridges. Though this is challenging, it is definitely
feasible. With the appropriate infra-structure, the language barrier can be
overcome with today’s technology at least among the Indian languages.

7.2.3 The Problem

The practical aspect of this problem is to divide the load between man
and machine in such a way that the aspects which are difficult for the
human being are handled by the machine, and aspects which are easy for
the human being are left to him. The aim is to minimize the effort of the
human being.

The approach, however, can not be a heavy-handed method because the
problem is very complex. A brute force solution will either blow up as a
result of the large amount of resources it will need, or the large amount of
time it will take. Another desirable feature of the approach would be the
ease with which the system can be extended to other related languages.
The system is likely to possess efficiency, extensibility, etc. only if it is
based on sound principles and theory.

Theoretical issues of interest relate to information and how it is coded in
language. How is the information extracted? A related question is why the
same amount of surface information in one language is clearly understood
while in another language, it is not clear to the reader. What are the
sources of knowledge that are used in information extraction? How should
the knowledge be organized?

Although the concept of anusaraka is general, we will discuss it in the
context of Indian languages: with respect to Kannada-Hindi anusaraka in
particular.

7.2.4 Structure of Anusaraka System

Structure of the anusaraka is shown in Figure 7.1. A source language
sentence is first processed by morphological analyzer (morph). The morph
considers a word at a time, and for each word it checks whether the word is

[SAND HI PACKAGE }—— MORPH

Paradigms
Lex

7.2. ANUSARAKA OR LANGUAGE

ACCESSOR

Default Choices
109

TAMS

Case-Parsarg Data

Y

Grouping Rules

Bilingual Dictionar,

MAPPING BLOCK |

Vibhakti Dictionary

TAM Dictionary

Target Lang.
TAM Details

Y

GEN (Morp

h Synthesizer) ‘

Paradigms (Noun,

Verb, Pronoun, Shashti)
Default Choices

'

| SYNTACTIC SUGAR |

'

Y

OUTPUT

ANUSARAK On-line Help

!

Figure 7.1: : Block Schematic of Anusaraka

110 CHAPTER 7. MACHINE TRANSLATION

in the dictionary of indeclinable words. If found, it returns its grammatical
features. It also uses the word paradigms to see whether the input word
can be derived from a root and its paradigm. If the derivation is possible, it
returns the grammatical features associated with the word form (obtained
from the root and the paradigm). In case, the input word cannot be derived,
it is possibly a compound word and is given to the sandhi package to split
it into two or more words, which are then again analyzed by morph.

The output of morph is given as input to the local word grouper. Its
main task is to group function words with the content words based on local
information such as postposition markers that follow a noun, or auxiliary
verbs following a main verb. This grouping (or case endings in case of
inflectional languages), identifies vibhakti of nouns and verbs. The vibhakti
of verbs is also called TAM (tense-aspect-modality) label.

After the above stage, sentential analysis can be done. Current anusaraka
does not do this analysis because it requires a large amount of linguistic
data to be prepared. Also, since the Indian languages are close, the 80-20
rule applies to vibhakti. Use of vibhakti produces 80% “correct” output
with only 20% effort.?2 Sentential parser can be incorporated when large
lexical databases are ready.

The next stage of processing is that of the mapping block. This stage
uses a noun vibhakti dictionary, a TAM dictionary, and a bilingual dictio-
nary. For each word group, the system finds a suitable root and vibhakti
in the target language. Thus, it generates a local word group in the target
language.

The local word groups in the target language are passed on to a lo-
cal word splitter (LWS) followed by a morphological synthesizer (GEN).
LWS splits the local word groups into elements consisting of root and fea-
tures. Finally, GEN generates the words from a root and the associated
grammatical features.

7.2.5 User Interface

Anusaraka output is usually not the target language, but close to it. Thus,
the Kannada-Hindi anusaraka produces a dialect of Hindi, that does not
have agreement etc. It can be called a sort of Dakshini (southern) Hindi.
Some additional notation may also be used in the output. Certain amount
of training is needed for a user to get used to the anusaraka output language.

The role of the anusaraka interface (or on-line help in Figure 7.2) is to
facilitate the reading of output by the reader. It should keep track of what
concepts have been introduced to the user, and also provide on-line help
when the user faces a problem.

2Tt is our estimate that the sentential parser will improve the performance only
marginally for translating from south Indian languages to Hindi.

7.2. ANUSARAKA OR LANGUAGE ACCESSOR 111

Source Language

| Core Anusaraka

N N i T

Userlnterface | | Intelligent User Interface‘ ZiudmL% HAMT| |Automatic Corrector

(to human
\ readers)
T ™ ™ Target Lang. Target Lang.
T T
| | HAMT MT

Various Levels of Anusaraka
Output

Figure 7.2: : Different Interfaces for Anusaraka

Depending on the nature of interface, one can have an ordinary user
interface, intelligent user interface, ggHAMT (human aided machine trans-
lation), and machine translation (see Figure 7.2).

7.2.6 Linguistic Area

The reason the above approach works for Indian languages even without
a full fledged parser is that the source and target languages are similar.
At mapping level, it is possible to find roots, TAMs, and noun vibhakti in
Hindi from an equivalent Kannada text without too many clashes.

Based on our experience, we can say that apart from agreement, there
are only 3 major differences in the south Indian languages with Hindi. All
these can in fact be bridged. They are described below for Kannada-Hindi

112 CHAPTER 7. MACHINE TRANSLATION

anusaraka. But first let us look at agreement.

7.2.7 Giving up Agreement in Anusaraka Output

Hindi has an agreement rule which can be stated as follows:

Gender number person (gnp) of the verb agrees with the gnp of the
karta if it has ¢ vibhakti®, otherwise the gnp of the verb agrees with the
karma, if it has ¢ vibhakti; otherwise the verb takes masculine, singular,
third person form.

When the input Kannada sentence has an ambiguity in identifying karta
(or karma whichever is relevant for agreement) and the gnp of the two
candidate kartas (or karmas) is different, an ambiguity will appear in the
gnp of the verb.

Similarly, possessive modifiers of nouns need information about gnp of
the related nouns. There are a number of cases where it is not easy to
compute. Sometimes, the relevant information may not even be available.*

Kannada has three genders (masculine, feminine and neuter), whereas
Hindi has only two (masculine and feminine). Consequently, some informa-
tion loss is bound to occur in going from Kannada to Hindi. To avoid this
loss, it will be necessary to provide additional notation to mark the neuter
gender. Here is an example to give its significance:

In Hindi, for karma-kartr prayoga, typically separate verb forms are
available; but in Kannada, frequently a single verb stem is employed. Thus,
on the surface, it seems that it does not distinguish between “daravaajaa
khulaa” and “daravaajaa kholaa”. However, in practice one can distinguish
between the two usages by paying attention to the gender marking on the
verb; in the first case it will be neuter gender while in the second, typically,
it will be a non-neuter gender® (where K specifies Kannada sentence, @H
specifies Hindi produced by anusaraka).

K: baagilu tereyitu.

QH: daravaajaa khulaa [kholaa].
(The door opened.)

K: baagilu teredanu.

QH: daravaajaa khulaa [kholaa].
((He) opened the door.)

3Karta having ¢ vibhakti means that it is not followed by a postposition marker (a
function word).

4There is a temptation to provide correct agreement according to standard Hindi
grammar, wherever it is possible without much effort and not bother about agreement
when it is not possible to do so easily; but such a policy will be potentially confusing
to the user. From the utility point of view, it always helps to keep the working of the
system simple and to provide a faithful picture of the working of the system to the user.

5“daravaajaa kholaa” (opened the door.) is an incomplete sentence in isolation but
it can occur in discourse in response to the question “raama ne kyaa kiyaa?” (What did
Ram do?)

7.2. ANUSARAKA OR LANGUAGE ACCESSOR 113

Loss of agreement is not expected to be too jarring to Hindi speakers
in view of their exposure to various varieties of non-native Hindi heard
everyday as propagated by television, radio and films.

7.2.8 Language Bridges

Apart from agreement there are only three major syntactic differences be-
tween Hindi and Kannada. Surprisingly all of these can be taken care of
by enriching Hindi with a few additional functional particles or suffixes as
shown below. Thus, they can be viewed as lexical gaps or function word
gaps. language bridges

“ki” construction

In case of embedded sentences in Hindi, these are put after the main verb
unlike in Kannada. For example (where K, H, and E specify the language
of the sentence as Kannada, Hindi and English, respectively; ‘'H’ stands for
gloss in Hindi, ‘!E’ for gloss in English, @H for anusaraka output in Hindji,
etc.):

(7.1) H: raama ne kahaa ki mohana kala aayegaa.
!E: Rama said that mohana tomorrow come-fut
E: (Rama said that mohana will come tomorrow.)

K:*raama helLidanu eneMdare naanu manege hoguttene.
'H: raam kahaa ki meiM ghara ko jaauulMgaa.
(Ram said that he will go home.)

Note, that the above Kannada sentence sounds odd to a Kannada person,
because of the order of the constituents. However by using “eisaa” instead
of “ki” we can easily avoid this problem, as illustrated below:

(7.2) K: mohana naale baruvanu eMdu raama heLidanu.
'H: mohana kala aayegaa eisaa raama ne kahaa.
!E: Mohana tomorrow come-fut that Rama said.

‘eisaa’ construction is a proper construction in Hindi; only it is used less
frequently. In the dialect of Hindi produced by anusaraka, however, this
will be the normal construction used.

“jo” construction

Kannada has a large number of adjectival participial phrases or clauses
which convey information about tense, aspect etc. but they do not have
information about karaka relations. In sentences (7.3) and (7.4), Kannada
codes information about tense in eating and making.

114 CHAPTER 7. MACHINE TRANSLATION

(7.3) K: raama tiMda camacavannu toLe.
Q@H: raam khaayaa thaa cammaca dho Daalo.

(7.4) K: raama tayaarisida camacavannu toLe.
Q@H: raama banaayaa thaa cammaca dho Daalo.

It does not contain information about the relation eat has to spoon
or make has to spoon. It is the background knowledge that provides the
relation between them. For example, the general world knowledge may
be used to say that spoon is the instrument of eat (and is not eaten) in
(7.3). In the next sentence (7.4) spoon could be the instrument or theme
of make.b

Hindi, on the other hand, has only two participial phrases viz. yaa_huaa
and taa_huaa which code perfective and continuous aspects only, e.g.,

(7.5) H: khaayaa huaa phala
eaten fruit

(7.6) H: khaataa huaa laDakaa
eating boy

Thus, anusaraka would be able to use these constructions in Hindi only
when the tense information in Kannada is appropriate. But what about
the other tense, aspect and modality? There is a syntactic hole in Hindi!.

There is another problem, however. The two participial phrases in Hindi
have coding for karaka relations which is absent in Kannada. yaa huaa
codes karma’, while taa_huaa codes karta. Participial phrase (7.5) says that
fruit that was eaten, while (7.6) says the boy who is eating. Thus, Hindi is
poorer than Kannada in coding tense, aspect, modality information, while
richer in coding karaka information in case of adjectival participles. But
this compounds the problem for anusaraka. Using these constructions in
Hindi would mean putting in something that is not contained in the source
language sentence.

The answer lies in identifying another construction in Hindi and creating
a correspondence between it and the constructions under consideration in
Kannada.

Hindi has another construction-the ‘jo’ construction-which allows both
tense and karaka information to be specified. For example, to say ‘wash
the spoon with which Ram has eaten’ we can write any of the following:

(7.7a) raama ne jisa cammaca se khaayaa thaa usako dho Daalo.

6Most native speakers are surprised to learn of this fact. The information dynamic
view, therefore, raises questions very different than those raised and studied in conven-
tional linguistics.

"More correctly, yaa_huaa codes karma, in case of sakarmaka or transitive verbs, and
karta in case of intransitive verbs.

7.3. SUMMARY 115

raama erg. which spoon instr. eaten that wash
(Wash the spoon with which Ram has eaten)
(7.7b) raama ne khaayaa thaa jisa cammaca se use dho Daalo.
(7.7c) raama ne khaayaa thaa jisase usa cammaca ko dho Daalo.

To express the same information as in the Kannada sentences (7.3) and
(7.4), we can invent a notation along with the jo-construction as follows:

(7.8’) raama ne khaayaa thaa jo_* vaha cammaca ko dho Daalo.

The vibhakti markers (i.e., the functional words se, ko etc.) are replaced by
“*7j0_*’ could even be replaced by ‘jouna’ to produce a kind of colloquial
Hindi in some region.

(7.8") raama ne khaayaa thaa jouna vaha cammaca ko dho Daalo.

Unlike the first case, this idea takes some time and effort for the Hindi
reader to get used to.

“ne” construction

This “ne” construction is a peculiarity of only the Western belt languages
in India. In case of the present or past perfective aspect of the main verb
in Hindi sentence, “ne” is used with the karta:

(7.9) H: raama ne phala khaayaa.
Ram erg. fruit ate.
(Ram ate the fruit.)

In case of yaa_gayaa TAM label, ‘ne’ is not used.
(7.9°) H: raama phala khaa gayaa.

Therefore, we can postulate a new word TAM “yaa‘” with same seman-
tics as “yaa”, but which does not use “ne” construction; with this TAM we
can express the corresponding Kannada sentence more faithfully as:
raama phala khaayaa..8

7.3 Summary

We have argued that it is possible to overcome the language barrier in
India using anusaraka. Anusaraka tries to take advantage of the relative
strengths of the computer and the human reader, where the computer takes
the language load and leaves the world knowledge load on the reader. It is
particularly effective when the languages are close, as is the case with Indian

81t may be of interest to note that the “yaa” pratyaya in Hindi corresponds to “kta”
pratyaya in Panini’s grammar and so the new proposed pratyaya “yaa” will be natural
counterpart of the “ktavatu” pratyaya in the Sanskrit grammar.

116 CHAPTER 7. MACHINE TRANSLATION

languages. Keeping in line with the anusaraka philosophy, it bridges the gap
between languages by chosing the most appropriate or nearest construction
available in the target language together with suitable additional notation.
It needs to be re-stated that even without a sentential parser, the
anusaraka for Indian languages delivers something practical today. More
detailed sentential or text analysis requires preparation of karaka charts
and other lexical databases. These can be gradually built and incorporated
in the system. Thus, the system is designed to grow modularly.
Anusaraka can be viewed from the following different points of view.

1. Anusaraka as an evolutionary system. Anusaraka delivers something
practical today without waiting for several years and has the potential
to keep pace with developments in technology; the work to be done
for building it, needs to be done in any case for high-quality fully
automatic machine translation systems; and its availability will help
in accelerating the work towards development of machine translation
systems of the future.

2. A practical approach to develop intermediate language (or interlin-
gua) for a group of languages. Designers can get a first hand view
of various source language phenomena in terms of the language the
designer knows.

3. A modular system. By adding suitable modules, it can be converted
into:

e A device to understand source language text.
e Human aided machine translation system.

e Fully automated high quality domain specific machine transla-
tion system.

4. A way to factorize language part from world knowledge part. Anusaraka
suggests a clean way to separate the language knowledge from world
knowledge, and how to use them in construction of a system in a
systematic way.

There are some common misconceptions about anusaraka. We describe
them now.

1. Anusaraka is a “rough” translation system: Strictly speaking, this is
not true. Conceptually, anusaraka is different from translation. It
provides exactly the information contained in the source text, while
translation involves interpretation of the source text before express-
ing it in the target language. In case of legal documents, therefore,
translation seldom suffices. Anusaraka on the other hand will only

7.3. SUMMARY 117

say what is explicitly stated. When one is willing to put in extra
effort and time then online output of anusaraka can be superior to
any translation. Because anusaraka makes full surface information,
as well as complete language knowledge available to the reader, if the
reader is willing to take some pains, he can get full appreciation of
the original text. The effort on the part of a reader can be minimized
by:

(a) the proper design of the intelligent user interface;
(b) proper training on the part of reader;

(¢) practice in using the system.

2. Ad hoc improvements such as partial agreement can improve the per-
formance of the system: This is not correct, because then the user
will not be sure about what to expect and what not to expect from
the machine. It pays to keep the working of the machine simple.
Syntactic sugar is to be added at personal risk. It may sometimes be
injurious to health. Ad hoc improvements which work for one text
might cause grave problems with other texts.

3. Anusaraka, in principle, is against having a sentential parser: Anusaraka
is not against sentential parsers. A sentential parser may be included
depending on the availability of technology and linguistic databases.
As the Indian languages are close, vibhakti mapping is quite effective.
Therefore, anusaraka for Indian languages can be built without wait-
ing for the parser to be available. Later, when large computational
lexical databases are available, parser can be incorporated. In fact,
for an anusaraka from English to Indian languages, a parser will be
absolutely necessary.

Further Reading

Section 7.1 originally appeared in the magazine 2001 (formerly Science
Today) in the January 1989 issue. For a tutorial on Machine Translation,
see King (1987). Nirenberg (1987) contains several articles on what is
possible and what is not. The journal of Machine Translation is exclusively
devoted to this area. For a discussion on an appropriate strategy for MT
in India, see Bharati et al. (1994a).

Section 7.2 is same as Bharati et al. (1993c). For a discussion on
anusaraka as a measuring tool see Bharati et al. (1993d). Anusaraka is
discussed in detail in the Ph.D. thesis of Narayana (1994).

Natural language interface to databases is another important applica-
tion area. Such an interface for Indian languages is discussed in Bhargava
(1992) and Bharati et al. (1993).

118 CHAPTER 7. MACHINE TRANSLATION

Chapter 8

Lexical Functional
Grammar

Lexical Functional Grammar (LFG) is a strong computational formalism
that addresses how to extract grammatical relations from a sentence in a
positional language such as English. Its major strength is that it gives ex-
plicit algorithms. Its weakness is that it does not offer any theory regarding
lexical ambiguity, adjuncts, optional theta-roles, and mapping from gram-
matical relations to theta-roles. Here, we describe how LFG handles active-
passive and dative constructions, and wh-movement in questions. We also
discuss features and feature structures, and unification.

8.1 Introduction

LFG has been designed by Kaplan and Bresnan (1982) with a view to pro-
vide a computational formalism for analyzing sentences in natural language.
The main problem it addresses is how to extract grammatical relations from
a sentence. It postulates two levels of representation: one based on con-
stituent structure and the other on grammatical functions such as subject,
object. A particular source of difficulty in English is the fact that positions
are used for coding both theta relations as well as topicalization etc. Con-
siderable effort has gone into design of LFG so that it can deal with and
separate these two kinds of information.

LFG also indicates how the grammatical functions can be mapped onto
theta roles. But here, it offers no theory, the mapping must be enumerated
exhaustively in the lexicon.

A major strength of LFG is that it gives explicit algorithms for extract-
ing grammatical functions. It uses context free grammar (CFG) for speci-

119

120 CHAPTER 8. LEXICAL FUNCTIONAL GRAMMAR

fying constituent structure. Efficient parsing algorithms for CFG are well
known (e.g., Early (1970), Cocke, Younger, Kassami algorithm (in Younger
(1967)), Tomita (1986)). LFG uses the powerful unification mechanism for
specifying mapping to grammatical relations. The same mechanism uni-
formly handles constraints across constituents in the constituent structure.
More importantly, algorithms that solve these constraints are completely
specified.

A weakness of LFG is that it does not offer any theory regarding lexical
ambiguity, adjuncts and optional theta roles, and mapping from grammat-
ical relations to theta roles. These tasks are left for the lexicon with LFG
offering no linguistic insight as to how to do them. In fact, if one were to
exhaustively enumerate the possibilities, in the lexicon the solution would
be computationally expensive too.

In this chapter we will focus on some selected aspects of English, namely,
two types of movements, and see how LFG handles them. The following
are the movements of interest here:

1. active-passive and dative constructions
2. wh-movement in wh-questions

Before going into the LFG formalism, it is appropriate to make a few ob-
servations on the phenomena to be explained.

8.1.1 Active-Passive and Dative Constructions
As examples of active-passive consider the sentences

(1) A boy gave a book to the girl.
(2) A book was given to the girl by a boy.

Sentence (2) can be thought of as a sentence that has been obtained from
its active counterpart (1) by moving the object ‘a book’ to the subject
position, and converting the subject ‘a boy’ as a prepositional phrase and
moving it to after verb. Moreover, optionally, the latter can be dropped
altogether as shown by sentence (3). In fact, in the passive sentence, both
object and the ‘by’ prepositional phrase can be dropped.

(3) A book was given to the girl.
(4) A book was given, yesterday.

In dative construction, there are two objects.
(5) A boy gave the girl a book.

This can again be considered to be obtained by movement of ‘to’ preposi-
tional phrase as the object, and earlier object as object2. Another passive
form is possible on dativization. Example sentences with the passive form
are given in (6) and (7).

8.2. OVERVIEW OF LFG 121

(6) The girl was given a book by a boy.
(7) The girl was given a book.

8.1.2 Wh-movement in Questions

In a wh-question, the wh-phrase containing the questioned element moves
from its normal position to the front of the sentence.
Examples are the following sentences’

(8) *Ram killed who 7

(9) Who did Ram kill ?

(10) *Mohan said Ram killed who ?

(11) Who did Mohan say Ram killed 7

(12) Who did Mohan say Shyam believed Ram killed 7

As sentence (12) shows, wh-element can move (arbitrarily) long distance in
case of (arbitrarily deep) embedded sentences.

8.2 Overview of LFG

LFG assigns two representations (at two different levels) to a sentence.
They are called c-structure (for constituent structure) and f-structure (for
functional structure). The former is a tree structure which shows word
order and hierarchical structure of constituents. The latter is a structure
containing a set of attribute value pairs, and it may also be hierarchical.
Consider sentence (5) above, as an example.

(5) A boy gave the girl a book.

Its c-structure is shown in Figure 8.1(a). It has the usual syntactic and
lexical categories. The tree encodes hierarchical as well as word order in-
formation. The corresponding f-structure is given in Figure 8.1(b).

It has the attributes subj, pred, tense, obj, obj2, spec, etc. The values
of the attributes are shown next to them. Subj, obj, and obj2 are called
grammatical functions because they are specified by the grammar and not
by the lexicon. Pred is a special attribute that maps to semantic represen-
tation from the f-structure. Its value is the predicate argument combination
for the f-structure. From the above f-structure, we can obtain the following
predicate argument representation (ignoring spec and tense):

give (boy, book, girl)
If we take the passive sentence (6)

(6) The girl was given a book by a boy.

1Fcho questions are not included. Some of the questions that are marked as bad are
alright as echo questions.

122 CHAPTER 8. LEXICAL FUNCTIONAL GRAMMAR

(163.30849,56.9055)(46.72644,0) (163.30849,56.9055) (224.2613,0)
NP

(46.72644,56.9055) (162500300248 55BR4 3650 FRIH (77 ZXRR6)().02.35568,56.9055) (92.56398,0) (102.35568,56.9055) (177.14185,0

det (A) n (boy) v (gave) NP (the girl) NP (a book)
(a): c-structure
. spec a T
subj. [pred ’boy’]

pred 'give <t subj,?t 0bj2,1 obj >'

tense past
. spec a
0bj2 [pred "book’]
. spec the
i obj [pred 'girl’] 1

(b): f-structure

Figure 8.1: Representation of sentence (5)

8.3. LFG FORMALISM 123

the final predicate-argument representation must remain the same as before:
give (boy, book, girl)

indicating that the ‘gross’ meaning of active and passive remains the same.
This holds inspite of the different c-structure and f-structure from the active
sentence:

As the f-structure in Figure 8.2 indicates (see values of pred) there would
be at least two lexical entries for give: one corresponding to the active use
and the other to passive use in dative construction. (In fact, there will be
two more lexical entries for normal active and passive, and several more
to take care of optional object and prepositional phrases in case of the
passives.)

8.3 LFG Formalism

LFG formalism has two major components, a ggcontext free grammar and
a functional specification. The former gives the c-structure for a sentence,
and the latter gives the f-structure. The two components are interrelated,
however, and the f-structure is produced by using functional specification
together with the c-structure.

The functional specifications usually consist of equalities associated with
each non-terminal on the right-hand side of the context free (CF) rule. In
the example grammar from Kaplan and Bresnan (1982) given below, there
are two special symbols: up-arrow and down-arrow (called meta-variables).
The down-arrow in a functional specification associated with a non-terminal
refers to the f-structure with the non-terminal, while the up-arrow refers
to the f-structure associated with the symbol on the left-hand side of the CF

(R1) S — NP VP
Tsubj=| t=1{
(R2)VP -V {NP} { NP} PP*
rule. Tobj=1] Tobj2=, 1 ({ pcase) = | obj
(R3) PP — prep NP
Tobj=1{
(R4) NP — det noun | pronoun

Rule (R1) says that a sentence (S) consists of a noun phrase (NP) fol-
lowed by a verb phrase (VP). The functional specification associated with
the NP says that the f-structure for S has an attribute subj whose value is
the f-structure for NP. Thus, the f-structure for NP is the subject in the
f-structure for S. The second specification says that the f-structures for VP
and S are equal.

In rule (R2), both NPs are optional, which are followed by prepositional
phrase (PP) repeating zero or more times. The NPs contribute to object
or object2, in the f-structure of the sentence, PPs are stored as adjunct.

124

CHAPTER 8. LEXICAL FUNCTIONAL GRAMMAR

(227.9141,56.9055)(50.907,0)(227.9141,56.9055)(293.04747,0)

NP

(50.90698,56.9055) (21.11115,0({60.98698,56.9055)(36.23892) (162.78072,56.9055) (193.14601,0)

det (The) n (girl)

subj.

pred

tense

obj

by

(132.41544,56.9055)(19.58337,0)(132.41544,56.9055) (95.18901,0)(132.41544,56.9C

v (was)
v (given)
spec the
pred 'girl'

'give(t byobj, T 0bj, 1 subj)’

past

spec
pred

spec
pred

a
"book'’

a
"boy’

NP (a book)

(56.80978,56.9055)(17.7917,0) (56.80978,56.90:
pre (by) NP (a boy)

Figure 8.2: C-structure and f-structure for passive sentence (6)

8.4. WELL-FORMEDNESS CONDITIONS 125

To obtain the f-structure, we must use the functional specification along
with the c-structure. Consider as an example, sentence (5) whose c-structure
is given in Figure 8.1 (a). Let fl be the f-structure of the sentence and
f2 that of the NP. Therefore, on using the subject specification of the c-
structure we get:

f1 subj = f2

Similarly, other equations can be written down. The terminals also yield
equations, using the lexicon. Solution to the equations is an f-structure
shown in Figure 8.1 (b). It is associated with the root node S in the c-
structure.

Some example lexicon entries are:

the, det

1 spec = the
boy, noun

1 pred = ‘boy’

1 num = singular

8.4 Well-formedness Conditions

The f-structure assigned to a sentence must satisfy certain well-formedness
conditions. If any of these conditions are violated the assignment is rejected
and an alternative structure is explored.

The first condition that must be satisfied by an f-structure is that of
uniqueness. It says that an attribute in an f-structure can have at most
one value. For example, if it is required that the following f-structures
(corresponding to ‘boys’ and ‘a’) be made equal.

num plural| |num singular
pred boy spec a

it will fail to yield a consistent f-structure because of the clash in the value
of attribute num. Note on the other hand that the f-structures in Fig. 8.3
(a) can be made equal to yield the f-structure in Fig. 8.3 (b).

num singular| |num singular
pred boy spec a

Figure 8.3 (a): F-structures for ‘boy’ and ‘a’

126 CHAPTER 8. LEXICAL FUNCTIONAL GRAMMAR

Figure 8.3 (b): Resulting f-structure on unification of f-structures of ‘boy’
and ‘a’

Figure 8.3: An example of unification of f-structures

num singular
pred boy
spec a

This process of making two f-structures equal is called unification. It
will be discussed in detail later. The uniqueness condition is a general
method for specifying co-occurrence restrictions including agreement.

The second condition is that of completeness. Approximately, an f-
structure is complete if it contains all the attributes named in the arguments
of its predicate. For example, if we have the attribute pred with the value:

give < (1 subj, 1 obj2, 1 obj) >
the f-structure must contain values of the attributes subj, obj and obj2.
This condition would cause the following sentences to be rejected for ex-
ample:

*A boy gave the girl.
*A boy gave.

Note that these would not otherwise be rejected by the grammar rules.

The third and final condition relates to coherence. It states that if
there is a grammatical function in the f-structure, it must also occur in the
predicate-argument combination. For example, if there is a grammatical
function obj2, then it must also occur in the value of pred. This would
cause the following sentence to be rejected:

*The boy slept the book.
*The boy ate the apple the girl.

because predicate for sleep has only one argument (relating to subject), and
that for eat has only two arguments.

The second and third conditions correspond to theta-criterion of GB
(see Chap. 12) or aakaankshaa-yogyataa principle of Panini (see Chap. 5.).
They capture sub-categorization and theta-role assignment.

8.5 Handling Wh-movement in Questions

To handle long distance movement, there are bounded metavariables no-
tated as down and up arrows with double edged tails ({, 1}). They are

8.6. COMPUTATIONAL ASPECTS 127

respectively called controller and controllee. Here, we will consider wh-
movement related to wh-questions only.

To handle the fronting of wh-phrases we will change rule R1 to R1’.
Also, the gap left behind by the movement will be handled by allowing
empty noun phrase (see R5).

(R1) S — {NP} NP VP
1+ wh =+ Tsubj = | =1
1 Quest = |
t=1

(R5) NP — e
t=1

By defining the f-structure of the moved wh-phrase as a controller, and that
of the empty NP as a controllee, we indicate that the f-structures are the
same.

Thus, controller and controllee have a special meaning in LFG. The
closest nested matching controller and controllee are made equal or unified.
(This is equivalent to coindexing in other grammars.) Other rules about
agreement etc. continue to hold. As an illustration consider the following
sentences:

*Which boys e comes to school in time.
Which boys e come to school in time.

The former sentence is bad because of agreement violation of the empty
element with the verb.

8.6 Computational Aspects

As mentioned in the introduction, a major strength of LFG is that it gives
explicit algorithms by which c-structure and f-structure can be obtained
for a sentence. As it uses CFG, the parsing problem namely, arriving at a
c-structure from a sentence is a solved problem. Several efficient algorithms
are known and their implementations are available “off-the-shelf.”

The f-structure of a sentence can be obtained by using its c-structure and
functional specifications in LFG. Here, use is made of unification, a power-
ful operation. We discuss the notion of feature structures and unification
below. The discussion is based on Reyle and Rohrer (1988; Introduction).

8.6.1 Features and Feature Structures

Features have been used in linguistics since long at nearly all levels of
linguistic description. A simple example of features associated with a noun
phrase has been given in Figure 8.3 in the form of matrix representation.

128 CHAPTER 8. LEXICAL FUNCTIONAL GRAMMAR

It can be expressed in the form of a graph representation in Figure 8.4.

(56.93892,56.9055)(18.06949,0) (56.93892,56.9055)(72.5084,0) (56.93892,56.9055)(111.37784,0)
num gped

(18.06949,56.90759{ 89 6ME) DA FEN))

Singular boy a

Figure 8.4: Graph representation of a f-structure

It is simple in the sense that each attribute (or feature) has an atomic
value that it can take out of a fixed finite set. If we relax atomicity, the value
of an attribute can be a feature structure and we can build hierarchical
structures. Suppose we were to group num and person into one feature
called agreement, then its value would be non-atomic (See Figure 8.5). In
f-structures in LFG, we have been using such complex structures.

Feature structures can simply be viewed as complex symbols or complex
categories. GPSG by Gazdar et al. (1985) which uses features extensively,
in fact, can be shown to be equivalent to a CFG by this (and other) argu-
ment(s). To illustrate the argument, suppose we want to say, using features,
that subject must agree with the verb in number:

S — NP VP
1T subj = 1 subj num = | num
t=1

Suppose further that num can take one of two values s(ingular) and pl(ural).
Now number agreement can be expressed without features by suitably
adding new categories and rules:

S — NP-S VP-S | NP-PL VP-PL

where NP-S stands for singular noun phrase etc.

8.6. COMPUTATIONAL ASPECTS 129

(72.85974,56.9055)(33.99031,0)(72.85974,56.9055) (104.35005,0)(72.85974,56.9055) (143.21948,0)
sed agreement

(33.9903,56.9055) (17. 2639 3654 FENEE D SERBIHEN)1806,0)

boy pansom

(17.26393,56.9053)667RHIIBD3,0)

singular 3

num singular

agreement
person 3

pred boy

spec a

Figure 8.5: Graph and matrix notation for a complex feature structure

130 CHAPTER 8. LEXICAL FUNCTIONAL GRAMMAR

8.6.2 Unification

Feature structures or complex categories form a lattice based on subsump-
tion also called extension (notated as C). It can be defined as follows:
Definition: A C B iff

Case (i) If A and B are atomic values, then A = B

Case (ii) If A and B are feature structures, then if there is a pair (a,u) in
A, there is a pair (a,v) in B such that u C v.

For every attribute value, the bottom element of the lattice is the empty
feature structure and the top element T is an artificially introduced element
for which X C T for all X. Subsumption is a partial order which, roughly
speaking, expresses whether two structures are consistent and whether one
contains more specific information than the other.

Two feature structures FS1 and FS2 are consistent iff there is a feature
structure FS (other than T) such that FS C FS1 and FS C FS2.

Unification of FS1 and FS2 is the least upper bound of FS1 and FS2
over the subsumption lattice. (Unification is said to succeed if a least upper
bound (other than T) exists.)

The notion of unification, while it has been borrowed from logic, is more
general here. A term in logic has fixed number of arguments, whereas in
feature graphs the number of features is open. For example, in Prolog we
may express the NP ‘a boy’ from Figure 8.3(b) as:

np (boy, a, singular)

Here, the arguments correspond to pred, spec and num, respectively. It
can be obtained by unification from the following two terms for ‘boy’ and
‘a’ corresponding to Figure 8.3(a):

np (boy, ___ , singular)
np (___, a, ___)

If we now wanted to add some additional information with the term for
‘boy’ say, about height, it is not easy as changes have to be made for all
kinds of other np terms.

As opposed to above, it is a relatively minor matter in feature structures
to add a new feature. Absence of a feature in a feature structure simply
means that the structure does not restrict the value of the feature in any
way. It can be said that the feature structures assume an open world while
the terms assume a closed world.

Thus, feature structures and their unification gives flexibility to the
linguists in that they do not have to specify in advance how many features
can show up and in what order they should appear.

In unification grammar of Kay (1979), LFG, GPSG etc. the context
free rules specify how the constituents are to be built up, and the con-
straints on features indicate restrictions that hold across constituents (be-
tween daughter nodes or between mother and daughter nodes). Informally

8.6. COMPUTATIONAL ASPECTS 131

speaking, constraints provide the possibility to transport information along
the branches of a syntactic tree. (If we get rid of the constraints and en-
code them into complex categories in context free rules, the information
transport across categories is “compiled” by increasing the number of cat-
egories.)

If we compare with attribute grammars we find that in those grammars,
synthesized features percolate from bottom to top of the tree, whereas
inherited attributes flow down the tree. Unification, on the other hand, is
order free. The same result is obtained irrespective of top-down or bottom-
up processing. Of course, completeness and coherence can only be checked
at the end after the final f-structure is obtained.

Unification over feature structures has the advantage that it gives con-
siderable freedom to the linguist in specifying restrictions across constituents.
It also gives freedom to the implementor to perform the checks at whatever
stage in whatever order he wishes. But there is a price to be paid. It results
in an inefficient operation for two reasons:

1. No order is implied, and because there is no way to assert that some-
thing, say, some important feature should be checked first, it results in
inefficiencies. Structures are built and only much later an important
feature may cause failure and undoing of work.

2. Because of the flexibility it provides, unification is an expensive op-
eration.

8.6.3 Other Constraints

LFG also permits existential constraints. It is used to express that an at-
tribute must have a value without specifying the value. For example,
(1 tense)

(R6) S —
is an existential constraint in the CF rule R6 for yes-no questions:

It asserts that the attribute tense must have a value in VP. This constraint
can only be checked at the end after the f-structure has been built.

A negative existential constraint is also available, which in contrast to
above, asserts that the named attribute must not be present.

Finally, there is another type of constraint that expresses necessity of
existence of a particular value. For example,
T aux =, +
in rule R6, expresses the necessity that the attribute aux must have the
value ‘+’. Unlike unification (for normal equality) this constraint only
checks the value, it does not add it to the f- structure if not already present.

v
T aux =. +

NP
T subj = {

N

132 CHAPTER 8. LEXICAL FUNCTIONAL GRAMMAR

The purpose of this device is to avoid putting default value of an attribute
everywhere when the non-default value is needed only at a few places. In
the example above, if we did not have the necessity constraint, we would
have to say with every non-auxiliary verb, that the value of attribute aux
is ‘-’>. Now, that is not necessary; when nothing is stated about aux, the
default value is ‘-’. It should be noted that if for an attribute only this kind
of constraint is used, it overrides the open world assumption.

8.7 Conclusions

In this chapter, we have tried to show that LFG is a strong computational
formalism for obtaining grammatical relations from a sentence. It has been
especially designed for a positional language such as English which uses po-
sitions or word order to encode theta relations as well as topicalization. By
using grammatical relations (in f-structure), it is able to extract appropriate
information from an English sentence.

Further Reading

Bresnan (1982) contains several papers on LFG from the linguistic view-
point. Kaplan and Bresnan (1982) introduces the formal LFG system. Ma-
terial in this chapter first appeared as part of a tutorial (Bharati et al.,
1992b). See Ramesh and Sangal (1989), Block and Haugeneder (1988) for
a discussion on implementation aspects of LFG.

Generalized Phrase Structure Grammar (GPSG) mentioned in this chap-
ter is another well known grammar formalism proposed by Gazdar et al.
(1985). Lately, Head-driven Phrase Structure Grammar (HPSG) has be-
come popular in Europe (Pollard et al. (1985), (1987), Copeland et al.
(1991)).

Exercises
8.1 Show the c-structure and f-structure for the following sentences
(a) The farmer saw a big fireball in the sky.
(b) The boy went to the school.
(¢) The child climbed a tree.
(d) Divers searched the ocean bed for pearls.

8.2
(a) Show lexical entries for ‘went’ and ‘searched’ to handle the above.
(b) To handle the following sentences as well, what will you have to do?

8.7. CONCLUSIONS 133

(i) The boy went home.

(ii) Divers searched for pearls on the ocean bed.
8.3 Consider the following sentences:

(a) We want cakes.

(b) *Cakes are wanted by us.

(c) Police wants you.

(d) You are wanted by the police.

State what special propreties of LFG grammar can make (a),(c) and (d)
acceptable whereas (b) is rejected.

8.4
(a) Show the c-structure and f-structure for:

The secretary persuaded the boss to give her a long leave.
(b) Show the lexical entry for ‘persuade’ so that the implicit subject of
‘give’ is identified.
(c) What is the difference between lexical entry for ‘promise’ and ‘persuade’

8.5 The following sentences are ungrammatical. How does LFG account
for ungrammatility in each case.

(a) Ram promised Sita go.

(b) Ram promised.

(¢) Ram promised that Sita to go.

8.6 Write LFG grammar to handle the following kinds of sentences:
(a) A expected to go.

(b) A expected B to go.

Also show the lexicon entry for ‘expect’. (While writing grammar you
should keep in mind other sentence types in English or simply begin from
the grammar given in the chapter and modify it to handle the above type
of sentences.)

8.7 Show the c-structure and f-structure for the following sentences. Also
mark the nodes in c-structure where controller and controllee occur.

(a) A believed that B wondered what did the girl give to the baby.

134 CHAPTER 8. LEXICAL FUNCTIONAL GRAMMAR

(b) The girl wondered who Ram believed Sita claimed that the baby saw.

8.8 Analyze the following sentences and show their c-structure and f-
structure. What is the modified grammar that is needed.

(a) Who did Ram give a book to?

(b) To whom did Ram give a book?

(¢) The girl wondered who I believed that the baby saw?
(

d) The girl wondered who the baby persuaded the boy to see.

8.9 How will you handle the following sentences:
(a) The gardener believes that the boys plucked the fruits.
(b) It is believed that the boys plucked the fruits.

(¢c) The boys are believed to have plucked the fruits. (Ignore “have”.
Assume that the sentence is OK without it.)

Build the necessary grammar rules and lexical entries.

Chapter 9

LFG and Indian
Languages

A grammar in LFG formalism has two basic components: an underlying
context free grammar and the associated functional specification. If we try
to use LFG formalism to write a grammar for Indian languages (or any
free-word order languages), the problems begin with CFG and go all the
way to functional specification.

9.1 CFG and Indian languages

Indian languages are basically free word-order languages whereas CFG for-
malism is designed to handle order or position elegantly. As a result, it is
a misfit.

Let us understand the problem through examples. We know that for
simple sentences in Hindi, the order of occurrence of noun groups (NGs) is
unimportant.! Consider, for example, the following sentences:

(9.1) 1laDake ne laDakii ko phoola diyaa.
boy ergative girl dative flower gave
(The boy gave a flower to the girl.)

(9.2) 1laDakii ko laDake ne phoola diyaa.
(9.3) phool laDakii ko laDake ne diyaa.

Even though the three noun groups occur in different order the gross mean-
ing of the three sentences is the same. In all three, the boy is the giver,

INoun groups are discussed in Chap. 4. A noun group consists optionally of adjectives
followed by a noun and an optional vibhakti marker, or it contains a pronoun or a proper
noun, etc.

135

136 CHAPTER 9. LFG AND INDIAN LANGUAGES

the recipient is the girl, and the object that is given is a flower. How would
these be captured by a CFG? Since CFGs express position information
readily, we can write the following grammar:

(CF.1) S — NG* VG

(CF.2) NG — adj* n pp-marker
(CF.3) NG — pronoun | proper-noun
(CF.4) VG — dekhaa

(CF.5) pp-marker — nelko|se|¢

Note that NG and VG (verb group) require their constituents to occur
in certain order which can be expressed by CFG (rules (CF.2) to (CF.4)).
In the case of a sentence, however, all that the context free rule (CF.1)
expresses is that in a sentence S, noun groups (NGs) can come in any
order followed by a verb group (VG). This is actually saying precious little!
Nothing has been stated about the number of NGs which can occur. This is
controlled by the verb in VG, but there does not appear to be any compact
way to state this in CFG. Nothing has been stated about what post-position
markers (pp-marker) may occur. This is determined by the verb group as
discussed in Chap. 5. But again there is no compact way to state this. If
we try to express this in CFG, see what happens to the resulting grammar
for say ‘dekha’ (see).

S - N’ ne N'ko N VG|
N ko N'ne N VG|
g {adj}* n

For the three noun groups (N followed by post-position marker) we have
six rules. Thus, to express that order is mot important we have had to
increase the number of grammar rules.

If we take into account the fact that depending on the TAM label (tense-
aspect-modality label) of the verb, the post-position marker would be dif-
ferent, the number of rules increases even further:

!

S — N' ne N ko N diyaa

s - N’ ko N ne N diyaa

s - N’ N ko N detaa hei
etc.

One can see that CFG is not designed to handle free word-order. Two
problems occur: First, to capture free word-order we have to increase the
number of rules. Second, free word-order languages have a rich system
of case endings. Far from capturing that richness, it leads to yet greater
increase in the number of rules. Finally, what it does capture compactly in
(CF.1) (that VG occurs at the end), can be captured by regular grammar

9.2. FUNCTIONAL SPECIFICATION 137

or finite state machines. The power of CFGs is not needed.

9.2 Functional Specification

Let us try to solve the problems that were faced in trying to use CFG, by
using functional specification. For example, if we work with rule (CF.1),
we can associate a functional specification that pulls out post-positions into
the functional structure. Thus, we might have the following:

(CF.1) S— NG * VG
(FS.1) T (Lpp) = 4 t=1
(CF.2) NG — adj * n pp-marker
(FS.2) t pp = | ppm
(CF.5) pp-marker — ne | ko |
(FS.5) T ppm = erg. 1 ppm = dat.
ko b
1 ppm = acc 1 ppm = nom
It is not difficult to see that the f-structure for the sentence (9.1) would be:
pred “ GIVE (1 erg, 1 nom, 1 dat) ”
erg [pred “BOY”]

dat [pred “GIRL”]
nom [pred “FLOWER”]

The same f-structure would be produced for sentences (9.2), (9.3) etc.
Thus, the problem of word order is taken care of using functional specifi-
cation resulting in a compact grammar.

It is important, however, to look critically and see what has been
achieved. All that has been done is that the post-positions have been
separated and listed next to the noun groups. In fact, all this could have
been done trivially in linear time using a finite state machine together with
an ability to list things. The power of CFG and functional specification is
not used. 2

How would this system handle the dependence of the post-position
markers of noun groups on TAM label of groups? These would be han-
dled by creating multiple entries in the lexicon. For example, we might
have the following kinds of entries in the lexicon:

diyaa (gave)

1 pred = “GIVE(? erg, 1 nom, 1 dat)”

2We have ignored the ambiguity of ‘ko’ here. Fach ambiguity in a post-position,
marker would increase the number of possible f-structures.

138 CHAPTER 9. LFG AND INDIAN LANGUAGES

detaa hei (gives)
1 pred = “GIVE(f nom,?T nom, 1 dat)”
diyaa gayaa (could be given)

1 pred = “GIV E(1 instr,t nom, 1 dat)”

Well-formedness condition on f-structure would cause all but one f-structure
to be rejected. But this might turn out to be very expensive. There would
be overhead of repeated construction of f-structures and then their rejection.
There would be another problematic aspect. A pointer to it appears in
the lexical entry for ‘detaa hei’. There are two nominatives in a sentence
with this form of the verb. How would those be handled? If a post-position
can repeat, we will have to form sets and check for membership in (FS.1)
rather than equality.
(FS.1') L€ (lpp)
Similarly, optional post-positions would introduce additional ambiguity.
The solution no longer looks as neat.
The most important point is that all this could have been done much
more efficiently by a much simpler grammar. The power of CFG and func-
tional specification, that is, the power of LFG is neither needed, nor used.

Further Reading

Mohanan (1982) discusses the need for the functional level for Malay-
alam (a major Indian language). He rejects the need for postulating subject
for it in the configurational sense. Gupta et al. (1988) discuss some issues
in writing a grammar in LFG for Hindi. Sengupta (1993) extends LFG to
handle Indian languages. But still the new extended LFG grammar has a
much greater power than needed, that is, it accomplishes something that
can be done by a much simpler grammar.

Chapter 10

Tree Adjoining Grammar

10.1 Lexicalized Grammars and Locality

There are two properties of grammars that are desirable: lexicalization and
locality. It has been shown by recent work in linguistics and NLP that
lexicon plays a very important role in grammar. Properties associated with
lexical items are important, and must play a central role in the grammar.
Lexicalization gives expression to the central role of lexicon.

Definition (Lexicalized Grammar): A grammar is said to be lexi-
calized if

e every finite structure of the grammar is associated with one or more
lexical items. The associated lexical item(s) is (are) called the anchor
of the corresponding structure, which must be realized overtly in a
sentence that is derived using the structure.

e There are one or more operations for composing the structures. These
operations on structures are used in deriving sentences.

A typical context free grammar consists of rules (which are referred to
as finite structures in the above definition), and the operation is that of
rewriting or substitution. Such a grammar will be termed as lexicalized
if, and only if every, rule is associated with an anchor. LFG grammar for
English that we have seen in Sec. 8.3 is not lexicalized because no lexical
item is associated, for example, with the rule :

S— NP VP

The second important property is locality. By locality is meant that
any constraint or property in the grammar is specified over a single finite
structure. Such constraints should not span over multiple finite structures.
Thus, if we have agreement between subject NP and verb in a sentence,

139

140 CHAPTER 10. TREE ADJOINING GRAMMAR

it should be expressible in terms of a single finite structure (i.e., rule).
Similarly, if one is giving semantics to the derived structures, it is given in
terms of units corresponding to the finite structures used in the derivation,
and their composition.

10.2 Lexicalized Tree Substitution Grammar

A Tree Substitution Grammar (TSG) consists of initial trees and the sub-
stitution operation. Some example initial trees are given in Figure 10.1.
An initial tree is a tree structure having nodes labelled by non-terminal

Asqw Qpoy Qgir]

NP*

Qg

NP NP
VP SN N |
N by N K N a
v NP} | |
| boy girl

Saw

Figure 10.1: Some example initial trees

and terminal symbols but with some restrictions: All the leaf nodes of the
tree are labelled by either terminals or non-terminals; in the latter case, the
leaf nodes are called substitution nodes and are marked by a down arrow.
In case every initial tree has at least one terminal symbol, the grammar is
called lexicalized TSG.

The substitution operation allows us to derive new trees by replacing the
substitution nodes in initial trees by other trees. For example, Figure 10.2
shows the result of substituting ap. in apoy. Informally, a tree obtained
by such sequence of substitutions is called a derived tree. A tree is called
completed if all its leaf nodes are labelled by terminal symbols. Some initial
trees are completed, for example, a, and ayp.. Completed trees can also be
derived from initial trees by substitution operation, for example, in Figure
10.2.

Nodes in a tree can be assigned addresses. We will use Gorn (1965)
addressing which assigns address 0 at the root node of a tree. Each of the
k children of the root node is assigned a number from 1 to k in left to right

10.2. LEXICALIZED TREE SUBSTITUTION GRAMMAR 141
NP
D N

the boy

Figure 10.2: Result of substituting oipe in apoy

order. For any other node if it is the ith child of its parent, and the parent
has an address p, then its address is p.i. For example, The first NP in aqq
has the address 1, while the second NP has the address 2.2.

Now we are ready to define the substitution operation.

Definition (Substitution Operation): Substitution operation takes
an (initial or a derived) tree, an address in it, and a completed tree, and
replaces the node at the specified address in the first tree by the completed
tree provided the following two conditions are satisfied: the addressed node
is a substitution node and its label is the same as that of the root node of
the completed tree.

Definition (Derived Tree): A derived tree is obtained by substituting
a completed initial tree in an initial tree, or by substituting a completed
initial tree or completed derived tree in an initial tree or a derived tree.

Figure 10.3 shows various substitutions necessary to obtain a derived
tree for:

The boy saw a girl.

Derived tree v; is the same as the tree in Figure 10.2. v, is obtained by
substituting the completed tree a; at address 1 in agqy. 73 is obtained by
substituting o, in o at address 1. Finally, y4is the result of substituting
the completed tree 73 in the derived - tree at address 2.2.

In the example above, note that we are making use of lexicalized TAGs.
Every initial tree has a lexical item. The structures of the grammar also
follow the principle of locality because each structure carries its predicate
arguments combination and the corresponding constraints. For example,
Qsq 18 anchored on the lexical item ‘saw’, which specifies a dyadic predicate
‘see’, and the (NP) slots for its arguments. If any restrictions are placed by
the predicate ‘see’ on its arguments, they appear as constraints on the single
initial tree. Thus, constraints would not be spread over several structures
of the grammar. In contrast, the following rules in CFG:

S — NP VP

VP — V NP
do not possess locality. The predicate (associated with V) appears in the
second rule, whereas one of its arguments appears in the first rule. Thus,

142 CHAPTER 10. TREE ADJOINING GRAMMAR
! Y2 V3
NP S NP
N /N
NP VP D N
AN L
the boy p’ N V NPV |
| | | a girl
the boy saw
(a) (b) (c)
V4
S
7\
NP)/P
/N N\
NV NP
(A
the boy saw D N
a girl

(d)

Figure 10.3: Derived tree y4for ‘the boy saw a girl’

10.2. LEXICALIZED TREE SUBSTITUTION GRAMMAR 143

even though the second rule is lexicalized it does not satisfy the locality
property. The first rule is neither lexicalized nor has locality.

As another example, consider an initial tree with ‘kicked’ as its anchor,
and another initial tree with ‘kicked the bucket’ as its anchor, shown in
Figure 10.4.

Akicked Akicked—bucket
S N
N /
NP, VP NPy VP

AN /\W
T [N
D N

kicked kicked

the bucket

Figure 10.4: Initial trees associated with ‘kicked’ and ‘kicked the bucket’

The predicate associated with agicreq is KICKED (i.e., hit by foot),
and associated with a;cked—bucker 1S the predicate DIE. Again, the locality
property is satisfied with these structures.

Consider the sentence :

The boy kicked the bucket.

144 CHAPTER 10. TREE ADJOINING GRAMMAR

Its derived tree is given in Figure 10.5.

AN
VANERVAN
D N VvV NP
AN

the boy kicked D N

the bucket

Figure 10.5: Derived tree for ‘the boy kicked the bucket’

However, there are two possible derivations: one from apgicreq and the
other from apicked—pucket- Lhe derived structure, therefore, does not make
explicit the derivation.

There is another structure called the derivation tree which is more fun-
damental. It shows derivations to be performed to obtain the derived struc-
ture. For example, for the sentence ‘the boy kicked the bucket’ there are
two derivation trees shown in Figure 10.6.

Olicked—bucket
Qkicked

Qboy(1)

. . I
. . 1

aboy(]-) Olébucket (22) :
I
I
I

ghe (1) Qghe(1)

athe(l)
Figure 10.6: Derivation trees for ‘the boy kicked the bucket’
In a derivation tree, a leaf node d is a child of a node ¢ (connected by

dotted line arc) if d is substituted in c. The address p in ¢ where d is to be
substituted to obtain derived tree is shown in parentheses next to d:

10.3. LEXICALIZED TREE ADJOINING GRAMMAR 145

In general, if d, a child of a node ¢, is a non-leaf node in a derivation tree,
then first a derived tree is obtained for the tree rooted at d and then it is
substituted in c as before.

Thus, given a derivation tree, the derived tree can be obtained by per-
forming the substitutions in a bottom up manner starting from the leaf
nodes. However, there is no real need to obtain the derived tree. The
meaning of a sentence can be constructed from the derivation tree(s). For
example, semantic objects corresponding to the ambiguous sentence ‘the
boy kicked the bucket’ can be constructed from the two derivation trees in
Figure 10.6.

Here is a sample construction of the semantic object. agickeq has an
associated semantic form as shown:

KICKED (1, 2.2)

It says that the predicate is KICKED, its second argument is what gets
substituted at address 2.2, and so on for first argument. Similarly, ooy has
the semantic form BOY, and aipycrer has the semantic form BUCKET. From
the first derivation tree we get (by substituting at 1 and 2.2 in ‘KICKED
(1,2.2)):

KICKED (BOY, BUCKET)

(Here, aipe and a, have been ignored for simplicity.) The semantic form as-
sociated with agicked—pucket 18 DIE(1) and the second derivation tree yields:

DIE (BOY).

10.3 Lexicalized Tree Adjoining Grammar

TSG is not powerful enough to handle the so called ‘wh-movement’ in En-
glish. For this purpose, we will need to augment TSG with additional struc-

tures and operation. The augmented grammar is Tree Adjoining Grammar
(TAG).

146 CHAPTER 10. TREE ADJOINING GRAMMAR

TAG consists of initial trees and auxiliary trees, and two operations
substitution and adjoining (or adjunction). Initial trees and substitution
operation have already been defined as part of TSG. Awuziliary trees have
leaf nodes labelled by terminal symbols and nonterminal symbols; exactly
one of the leaf nodes with a non-terminal label same as the root of the
auxiliary tree is the foot node (marked by ‘“*’) and all other leaf nodes with
non-terminal labels are substitution nodes (marked by ‘|’). If every auxil-
iary tree (besides initial trees) has at least one lexical item (i.e., terminal
symbol) at a leaf node, the grammar is called lexicalised TAG.

Adjoining operation takes a tree and an auxiliary tree and performs
an operation as shown in Figure 10.7. In other words, the auxiliary tree

R /X\ R
X
tree auxiliary tree

resulting tree

Figure 10.7: (a) Pictorial rendering of adjoining operation

at a non-terminal node is inserted in the tree. For example, if we have

10.3. LEXICALIZED TREE ADJOINING GRAMMAR 147

an auxilary tree for ‘quickly’; adjoining operation can be performed on the
derived tree for ‘He spoke’ resulting in a tree for ‘He spoke quickly’ as shown
in Figure 10.8.

Bquz’ckly SO
/ \o
S adv
quickly
S
S S
/\ adv
NP VP quickly
NP VP
Pron A% pro vV
he spoke he spoke Figure

10.7(b) A derived tree and after adjoining with Bgyickiy

Definition (Adjoining Operation): To perform adjoining operation
on a tree t at address p using a tree u with a footnode (see Fig. 10.7(a)),
remove the subtree s of t rooted at p leaving a copy of the root node at
p, substitute u with the node at address p in t, and finally substitute s
at the footnode of u. Adjoining is disallowed if node at address p in t is a
substitution node. Also clearly, this operation can be carried out only if the

148 CHAPTER 10. TREE ADJOINING GRAMMAR

Qt

O u(p)

Figure 10.8: Arc in derivation tree

label of the node at address p in t is the same as the label of the root node
of u. The adjoining operation can be shown by an arc in the derivation
tree in Fig. 10.7(b). A completed tree is now defined as one which has no
substitution node. Thus, an auxiliary tree with no substitution node is a
completed tree (even though it does have a non-terminal at its foot node).
Definition (Derived Tree): A derived tree is any of the following:

1. An initial tree or an auxiliary tree.

2. A tree obtained by substituting a completed derived tree (without a
footnode) in an initial tree.

3. A tree obtained by adjoining a completed derived tree (with a foot
node) in a completed derived tree.

As an example, consider the auxiliary trees for relative clause for ‘ate’ in
Figure 10.9. The first is a relative clause with subject relativization and the
second is with object relativization. The NP dominating the empty string
(¢) indicates that the argument of V is not in its position, and coindexing e
and wh-NP by i (or shown by linking by dotted line) indicates that they are
the same elements. The rest of the tree is a familiar declarative structure.
Figure 10.10 shows the derived tree for ‘The boy who ate a banana saw
a girl’. It is obtained by substituting a, in Qpenaena, then the result in
Brei—subj—ate- This completed auxiliary tree is adjoined in v; (for ‘the boy’)
at address 0, which is then substituted in as_gec;. The final resultant tree
is called ;.

The derivation trees for 4 and ;5 are given in Figure 10.11.

It should be emphasized that the auxiliary trees are lexicalized and
have locality. Auxiliary trees for ggrelative clause for verb ‘ate’ have both
arguments of the predicate for ate in the structure.

Consider now an auxiliary tree for ‘thought’ in Figure 10.12.

10.3. LEXICALIZED TREE ADJOINING GRAMMAR 149

ﬂrel—subj—ate ﬂrel—obj—ate
f \ a
NP*E oS NP * S

| / \ Np, VP
“« V. NP} / \
| \Y% NP
ate | |
ate
....... €;
(a) Subject relativization (b) Object relativization

Figure 10.9: Auxiliary trees for relative clause

150 CHAPTER 10. TREE ADJOINING GRAMMAR

NP
A /N
D N
P | |
| a girl
the boy]

,Brel—subj—ate

a banana

Figure 10.10: Result of adjoining an auxiliary tree on 4

10.3. LEXICALIZED TREE ADJOINING GRAMMAR

Og_decl—saw

aboy(l) Qgirl (22)

athe(l) aa(l)

(a) for 74

Qs decl—saw

O‘boy(l) agirl(Q_-Q)

athe(l)

ﬁrelfsubjfate

(b) for ~s

Figure 10.11: Derivation trees for v4 and -5

151

152 CHAPTER 10. TREE ADJOINING GRAMMAR

/\
/\

S*

Bthought

Thought

Figure 10.12: Auxiliary tree for ‘thought’.

If Bihougnt is adjoined in Bre;—subj—ate at address 2.2 before it is adjoined
to 4 at 1 we get the derived tree v shown in Figure 10.13 for the sentence

The boy who Ram thought ate a banana saw a girl.

Note that even though ‘who’ in 7 has apparently moved away from
€ when compared with -5, this has been achieved without any movement
rule. The long-distance dependency is simply a consequence of inserting
some lexical items by means of the adjoining operation. The important
point is that auxiliary trees for the relative clause have locality, and yet it
does not affect long-distance dependency. It can thus be argued that TAGs
have an extended domain of locality of just the right amount.

10.4 Feature Structures

First, we discuss how feature structures can be used with TSG to handle
agreement. Later we will extend the notion to TAG.

To express that gender, number and person etc. of the verb must agree
with the subject NP, we introduce constraints. These are expressed by
structures which look like feature structures but have variables.! If the
same variable name occurs at two places, it indicates that the same value
must occur at both places.

Figure 10.14 shows the agreement constraint on an initial tree ag_ge-
It says that the value of the feature agr at V, VP and NP is the same as

!Feature structures and their unification has been discussed along with LFG in Sec.
8.6.

10.4. FEATURE STRUCTURES 153

. P

PI“OII NP VP a glI‘l

VAN

who N Vv

LN

Ram thought NP

; .
. /@tl‘szght | / \
B V NP
N
D N

ate
| |

a banana

Figure 10.13: After adjoining Bthought i Brei—subj—ate, and the result in 4
we get e

154 CHAPTER 10. TREE ADJOINING GRAMMAR

agr : [num : pl]

mode : decl
Qg_decl

agr : [num : sgj

mode : decl Vi
Vi

Vp[agr 1 X

/ \ see
[agr : x]V;

[agr :

sees

Figure 10.14: Feature constraints for agreement

variable X, where X can take any value. (Note that the initial tree ag_geq
is anchored on a transitive verb. The anchor is not shown explicitly but its
pre-terminal V; is marked by a diamond. The anchors ‘sees’ and ‘see’ are
shown separately with V; as root node having feature singular and plural,
respectively. The use of the diamond mark does not affect the power of the
grammar but is only a convenience device.)

When a substitution operation is performed, the substitution can be
performed only if the features unify. Thus, if we attach the tree for ‘see’
at the diamond node (like a substitution operation) the feature structures
unify, and X gets bound to:

X = [num : pl]
Now, if we try to generate the sentence:
* He see a movie every day.
by substituting the following tree:

NP [agr : [num : sg]]
|
pronoun [agr : [num : sgl]

I
HE

in ag_geq at address 1, the substitution fails (or is blocked) because the
unification of X with value [num : pl] fails with [num : sg].

In feature-based TAGs, two structures (called top and bottom) are at-
tached to each of the root node and foot node in an auxiliary tree. Similarly,

10.4. FEATURE STRUCTURES 155

two structures are attached at every node in a tree at which adjunction
might take place. Figure 10.15 shows how adjunction and substitution
affect the structures.

Figure 10.15: Structures after adjoining and substitution operations (U
stands for unification)

Note that an adjoining operation may be performed at an adjoining
node if its top structure ¢ unifies with the top structure ¢, of the root, and
bottom structure b unifies with the bottom structure by of the foot node.

Finally, after the derived tree is obtained, the top and bottom structures
at every node are unified. If unification fails at a node, the derivation is
rejected. Further adjunction(s) may be performed at the nodes at which

156 CHAPTER 10. TREE ADJOINING GRAMMAR

unification failed, leading to a new derived tree. The unification of top and
bottom structures would be carried out to check whether the new derived
tree is accepeable.

As an example, consider agreement between agr of subject NP and
VP, and modality when adjoining operation is present. In Figure 10.16,
variables W, X, Y, and Z as values of features, specify constraints. Note

[agr
/ \ o 3
mode :
lagr : X] NP / \
?ﬂ%de NPl ?r%de

Figure 10.16: Feature constraints for agreement and modality

that at node VP the value of agr in bottom structure and top structure, is
W and X, respectively because adjunction at VP node may give different
values to W and X.

To generate the sentence

The boy could see a girl.

the auxiliary tree for B.,ui4 needs to be adjoined to #; resulting in ¢ (Figure
10.17). In tree t, since the final structure has been reached, the top and
bottom structures in each of the VP node are unified. Note that in the
final structure, the two VP nodes have different number and modality. The
lower VP node gets its value from ‘see’ while the higher one gets its value
from ‘could’.

10.5 Some Mathematical Aspects

We have emphasized the notions of lexicalization and locality. Some read-
ers might wonder whether a given CFG G1 can be replaced by a lexicalized
CFG. G1 can always be converted to a weakly equivalent lexicalized gram-
mar G2 (in Greibach Normal Form), however, there might be no strongly
equivalent lexicalized CFG (Schabes, 1990). As a result, the parse struc-
tures for sentences would become different and linguistically unmotivated.

10.5. SOME MATHEMATICAL ASPECTS 157

t1

- g/ N

agr : [num : s
mgode[: 7 gl

....... 1
e Mt P

the boy V [agr : [num : pl]]
‘ NP

see
a girl

ﬂcould

yp [mode : ability]

/ :
®
“[mode : decl]

could

Figure 10.17 (a): Some initial and auxiliary trees with feature constraints

158 CHAPTER 10. TREE ADJOINING GRAMMAR

t : :
? . agr . o ol
/ \ o
NP VP
/ "
the boy \%
could VP . . - pl
/\ - e e
NP
v
see / \
a girl

Figure 10.17 (b): The final derived tree t5 by adjoining B.ouig in t1

Figure 10.17: Adjoining with feature constraints

10.5. SOME MATHEMATICAL ASPECTS 159

In case of TAGs, it has been shown that a strongly equivalent lexicalized
TAG exists for any given TAG grammar. Thus, lexicalized TAGs have the
same power as TAGs.

TAGs are more powerful than CFGs. It is known that CFGs do not
have adequate power to handle some natural language phenomena. TAGs
define a class of languages called mildly context sensitive because they
fall in-between CFG and Context Sensitive Grammar (CSG). It has been
forcefully argued that TAGs have just the right amount of power to capture
and explain language phenomena. Dutch ggcross serial dependencies, for
example, can be handled by it.

Moreover, TAGs have an extended domain of locality when compared
to other frameworks having greater power (e.g, LFG). Long distance depen-
dencies of wh-elements with empty elements in English, for example, occur
within a single grammer structure in TAGs, normally auxiliary trees. There
is also no need to talk about unrestrained movement. Therefore, TAGs have
superior locality property than other more powerful grammar formalisms,
and they are able to account for language phenomena without resorting to
unrestrained movement. They may also have greater psychological validity.

Further Reading

A large amount of literature is available on TAGs. See for example Joshi
(1985), (1987), Vijay-Shankar and Joshi (1991).

The Greibach normal form is described in any book on formal grammars
such as Hopcroft and Ullamn (1979). See Schabes (1990) for a discussion
on lexicalization of CFG.

Exercises
10.1 Define initial trees to handle passives in the following sentences:

A girl was seen.
A girl was seen by the boy.

10.2 Show initial trees for the verb ‘give’. You should be able to derive
the following sentences:

The boy gave the girl a flower.

The boy gave a flower to the girl.

A flower was given to the girl by the boy.
A girl was given a flower by the boy.

Show the derivation trees.

10.3 Handle the following sentences in TSG by defining suitable initial
trees:

160 CHAPTER 10. TREE ADJOINING GRAMMAR

It is raining.
He is an engineer.
The table is brown.

10.4 Show the derived and derivation trees for the following sentences :

The boy who Ram beat saw a girl.
The boy saw a girl who beat Ram.
The boy saw a banana which Ram bought.

Create any initial and auxiliary trees that you need.

10.5 How will you handle wh-questions? Build the requisite initial and
auxiliary trees needed to handle the following sentences :

Who gave Sita a book?
What did Ram give Sita?
Whom did Ram give a book?

Show derived and derivation trees. (Ignore ‘did’ for the time being.)
10.6 Show derivation trees for the following sentences :

The boy who Mohan thought Ram beat saw a girl.

The boy who Mohan thought beat Ram saw a girl.

The boy saw a banana which Mohan thought Ram bought.

The boy saw a banana which Mohan thought Shyam said Ram
bought.

10.7 Show derived and derivation trees for the following sentences:

Who did Mohan believe gave the book to Sita?
Who did Mohan believe Shyam said gave the book to Sita?

10.8 How can tough-movement be handled? Give your solution for the
following sentences:

It is tough to believe Ram beat Mohan.
Ram is tough to believe beat Mohan.

10.9 Show derived and derivation trees. (Ignore ‘did’ for the time being.)

Who did the boy who ate a banana give the book?

Whom did the boy who Mohan believed ate a banana give
the book?

Whom did the boy who Mohan believed ate a banana did
Shyam believe gave the book?

10.10 Use feature constraints to generate the good sentences and block
the bad sentences of the kind given below.

10.5. SOME MATHEMATICAL ASPECTS 161

They have gone to the city.
* He have gone to the city.
* He gone to the city
They could have gone to the city.
He could have gone to the city.
* He could has gone to the city
He has gone to the city

10.11 Extract modality information in the good sentences in the previous
exercise.

10.12 Handle number agreement in TAG between ‘boy’ and ‘know’ in the
following phrases:

the boy who knows swimming
* the boys who knows swimming

the boy who they say knows swimming
* the boys who they say knows swimming

10.13 Handle number agreement in TAG between ‘Ram’ and ‘run’ below.

Ram is tough to believe runs a mile
* Ram is tough to believe run a mile
* Ram are tough to believe runs a mile

162 CHAPTER 10. TREE ADJOINING GRAMMAR

Chapter 11

Comparing TAG with PG

There are remarkable similarities between the tree adjoining grammar (TAG)
and the Paninian grammar (PG). Derivation trees in TAG and modifier-
modified trees in PG have a one-to-one correspondence.

The differences relate to handling of optional arguments and sentential
arguments of verbs, and long distance dependencies. For Indian languages
which do not have long distance dependencies, PG should perform better
than TAG computationally because of the price paid for adjunction.

Finally, it should be noted that the existing TAG and PG are both
lexicalized and have locality. PG has superior locality because optional
arguments and sentential arguments of verbs are a part of its karaka chart.

11.1 Introduction

There are remarkable similarities between the tree adjoining grammar (TAG)
and the Paninian grammar (PG). Even though the two formalisms were de-
veloped in two different traditions (Western and Indian, respectively) for
two different languages originally (English and Sanskrit), they both have
similar structures. Here, we will look at the basic similarities and also some
differences.

11.2 Similarities Between TAG and PG

TAG considers derivation trees to be important rather than the derived
trees (Joshi, 1985). PG considers modifier-modified tree to be the impor-
tant structure (see Chap. 5). There is a direct correspondence between
derivation trees on the one hand and modifier-modified trees on the other.
As an example, the TAG derivation tree for the sentence:

163

164 CHAPTER 11. COMPARING TAG WITH PG

Asqw

"oy (1) Qgiri(2.2)
1

-
aene(1) ()

Figure 11.1: A TAG derivation tree.

The boy saw a girl.

is shown in Figure 11.1.

Similarly, the modifier-modified tree in PG for the following sentence in
Hindi:

usa ladake ne eka ladakii ko dekhaa.
that boy ergative a girl accusative saw
(That boy saw a girl.)

is shown in Figure 11.2.

11.2. SIMILARITIES BETWEEN TAG AND PG 165

(101.12988,56.9055)(21.97227,0) (162112988, 56.9Whiz) (187142086; Byre too

laDakaa(boy) laDakii(girl)

(21.97227,56.9055)(21.97227,0) 24 (15.13892,56.9055)(15.13892,0) 24-

usa (that) eka (a)

Figure 11.2: A PG modifier-modified tree

obvious to be missed. Note also the correspondence between tree addresses
in elementary trees of TAG (e.g., address (1) and (2.2) in asq4) and the
karaka label of demand word in PG (e.g., karta and karma of dekhaa (saw)).

Addresses where substitution takes place in an elementary tree indicate
its arguments, similarly the karakas indicate the “arguments” of a verb
demand word. For example, address 1 of a44, a formal object at this level
of analysis, can be mapped to an appropriate theta role such as agent at
the next level of analysis. In the case of PG, the label karta, again a formal
object at this level of analysis, can be mapped to agent theta role at the
next level of analysis. !

It should be noted, however, that the tree addresses carry information
about word order (e.g., address (1) occurs before address (2.2)) whereas
the karakas do not. Karakas, in fact, relate to vibhakti 2 for free word
order languages, but that is part of the karaka charts and vibhakti does not
explicitly appear in the modifier-modified tree. Since vibhakti has been
used and abstracted away in obtaining the modifier-modified tree, it is only
appropriate that it be so. Tree addresses in TAG, while performing similar
abstraction, continue to have order information as a left-over. (This does
not cause any problem, however.)

If one compares the elementary trees (i.e., initial trees and auxiliary
trees) in TAG with karaka charts in PG, one again finds a similarity. An

IThere is a difference here in that TAG would not be obliged to defend similarity in
meaning of address 1 when it occurs in two different trees. It would simply be a tree
address that occurs in two different trees! PG on the other hand would be obliged to,
and does, defend the use of the same label karta in two different trees.

2Vibhakti stands collectively for case endings, postpositions and prepositions, or a
combination thereof, depending on the language.

dekha (see)

karma

166 CHAPTER 11. COMPARING TAG WITH PG

initial tree for a verb anchor, (or a demand word) is like a karaka chart (or a
demand chart). The initial tree for a verb specifies (along with initial trees
for noun etc.) how the nouns “fit” in with the verb anchor. This “fitting”
is primarily in terms of word order. The karaka chart in PG, on the other
hand, specifies what vibhaktis must occur with the nouns, for them to “fit”
in with the verb. This fitting is in terms of constraints on vibhaktis. All
this is perfectly reasonable: Position works for positional languages and
vibhakti works for free word order languages. With the recent proposed
extensions to TAG by Vijay-Shankar (1992) and Rogers and Vijay-Shankar
(1992) and (1993), the concept of quasi-trees comes even closer to karaka
charts because the notion of tree is made more free and constraints are
introduced.

These basic similarities occur inspite of the fact that the formalisms were
developed independently and in two extremely different scenarios. This sug-
gests that the similarities are a sign of a discovery of some deep underlying
principles of language.

11.3 Differences between TAG and PG

The differences arise mainly because TAG uses adjunction whereas PG uses
karaka chart constraint satisfaction to handle the same language phenom-
ena. In particular, we look at the handling of optional arguments, sentential
arguments, and long distance dependency.

11.3.1 Optional Arguments

Verbs take optional “arguments” which in TAGs are handled by the ad-
joining operation. Thus, to generate the sentence:

The boy saw a girl by the river

the optional argument of location (‘by the river’) is inserted by the adjoining
operation. PG handles optional arguments by karaka charts and vibhakti
constraint satisfaction, the same mechanism that is used for mandatory
arguments. This has a better locality property where we use the same def-
inition of locality that is used by research workers in TAG (Schabes,1990).
Various constraints on feature structures of optional orguments, such as se-
lectional restrictions, follow from the verb. In TAG, they become non-local
whereas in PG they remain local to the karaka chart for the verb.

11.3.2 Sentential or Verbal Arguments

Adjunction is also used in TAG to handle those arguments of a verb that
take a sentence (or a verb phrase) as an argument. For example, the aux-
iliary tree for ‘thought’ (Figure 11.3) permits ‘thought’ to be inserted by

11.3. DIFFERENCES BETWEEN TAG AND PG 167

ﬂthought
S
VP
\Y S *

thought

NPl

Figure 11.3: Auxiliary tree for ‘thought’

adjunction in a tree for its sentential argument. This is already different
from earlier use of adjoining because now the initial tree corresponds to an
argument, whereas the auxiliary tree is the “predicate”. PG handles verbs
such as above through the karaka chart mechanism. For such verbs, the
appropriate karaka is marked to have a verb as its filler. After this the
normal method of karaka chart constraint satisfaction takes over.

It should be pointed out that the use of adjunction to handle the phe-
nomena above is not without a price. The worst case asymptotic complex-
ity result for a TAG parser is O(n®), while for the restricted karaka chart
satisfaction it is O(n®) (see Chap. 6).

11.3.3 Some Important Phenomena

Finally, adjoining operation is also used to handle unbounded movement
(or long distance dependency) such as movement of a wh-element in a wh-
question. TAGs handle these very cleanly which is a major strength of
TAG. Such movements are not known to occur in Indian languages. Hence,
this is not an issue for Indian languages. (Research has been conducted
on how PG can be applied to English to handle long distance dependency
(Bhatt,1993) and more work needs to be done.)

168 CHAPTER 11. COMPARING TAG WITH PG

The reverse question which can be asked: Can TAGs handle Indian
languages? The answer given by Joshi et al. (1991) is that by relaxing
the ordering constraint on children of a node in an elementary or derived
tree, free word order languages can be handled. But here one might end up
paying a price in efficiency because parsing of these may turn out to have
the same problem as parsing with ID/LP grammars (Barton et al.,1987).

11.4 Discussion

For Indian languages which do not have long distance dependencies, PG
should perform better than TAG (because of the price paid for adjunction).
To handle free word order, TAGs have to relax ordering which may lead to
a further price in efficiency. PG, on the other hand, utilizes the vibhakti
constraints to build an efficient system. It remains an open question as to
how well does PG handle long distance dependencies.

With the recent proposals to change TAG, the new quasi-trees are be-
ginning to look even more like the karaka charts and other structures in
PG.

Finally, it should be noted that the existing TAG and PG are both
lexicalized and have locality. PG has superior locality because optional
arguments of verbs are a part of its karaka chart.

Further Reading

Recent proposals by Vijay-Shanker and his group (Vijay-Shanker (1992),
Rogers and Vijay-Shanker (1992), (1993)) are noteworthy. With the sug-
gested changes, the new TAGs with quasi-trees begin to look even more
like the Paninian grammar.

This chapter is based on Bharati et al. (1994b). There is a need to
explore the application of PG to English (Bhatt, 1993). Many interesting
new results are likely to come out of such an exercise.

Chapter 12

Government and Binding

Government and Binding (GB) is the dominant linguistic theory, yet it
has not been very popular with computational linguists. There are two
reasons for this. First, GB does not address the problem of either parsing
or generation. As a result, it proposes its formalism in a form which is not
amenable to computation directly. Second, GB keeps changing so much
and so rapidly, that it is difficult to know what GB is at any given time and
implement it. In this chapter, we sketch GB theory and give some tentative
suggestions for implementing it for an English like language.

12.1 Introduction

We begin by posing a question: Why inspite of being the dominant linguistic
theory, has Government and Binding (GB) been comparatively less popular
with computational linguists? Basically there are two reasons:

1. GB does not address itself to either the problem of natural language
parsing or of generation. Its goal is to identify the innate structure in
human mind which enables a child to acquire language so effortlessly.
As a result it proposes its formalism in a form for which neither
existing parsing tools developed by computer scientists can readily
be used, nor is it clear how new efficient parsing techniques can be
designed in a straightforward manner. In other words one has to
begin in some sense, ab-initio.

2. The GB theory has not yet reached a stable enough form where one
would invest the effort in building a complete GB parser. It has been
commented “TG is a field whose very foundations shift as remorse-
lessly as quicksand” (Radford, 1988).

169

170 CHAPTER 12. GOVERNMENT AND BINDING

The next question that comes up naturally is: If the above reasons hold
why should NLP workers invest their time and effort in studying GB? The
answer is as follows:

1. If one is interested in the task of accepting only grammatical sen-
tences then at least for languages like English where movement plays
a crucial role, examples are known, for which, “there is no natural
way to capture their effects in any of the well-known logic grammars
or extensions of them” (Stabler, 1990). It is not being claimed here
that GB has satisfactory solutions to these problems but at least a
very large number of leading linguists are working on these problems
in the GB framework and one would like to get the benefit of their
efforts and insights.

2. Whereas many other grammatical formalism either do not address
the problems of anaphora resolution and quantifier scoping or assume
that they are best handled by pragmatics, GB linguists invest most
of their efforts in attempting to solve these problems using the same
machinery which GB has developed for handling wh-movements. Of
course it must be admitted here that they address a very small fraction
of the anaphora resolution problem.!

3. Because for implementing GB parser one has to start ab-initio, one
tends to tailor the parser according to the need of the natural lan-
guage, e.g., due weightage is given to the lexical properties of heads
of constituents early enough in the parser along with principles for
case assignment and thematic role assignment, which in turn enables
one to properly address the problem of ambiguity in an appropriate
manner (see Wehrli (1988)). In other words, because the theory is
silent or neutral to parsing or generation, particularites of the natu-
ral language concerned can be made use of while designing a parser
without coming into conflict with the theory.

Having seen the goal and the concerns of GB and why NLP researchers
should look at GB, at least while working on English like languages, we will
first give an overview of the GB model. In the next section we will look at
GB in more detail, and in particular, at each of the principles and modules.
In Section 12.3, we will suggest how GB can be used computationally for
parsing English.

The basic organization of GB grammar can be seen in Figure 12.1. Tt
has three levels of representations of a sentence: D-structure, S-structure
and LF-representation. PF-representation is the sentence itself.

1By anaphora, linguists mean reflexive pronouns like ‘himself’ etc. and reciprocals
such as ‘each other’.

12.2. THE GB MODULES 171

Lexicon
|
| GENERATE-a
|
D-structure
|
| MOVE-a (Move any constituent
| to any position)
S-structure

N\
PF-COMPONENT / \ LF-COMPONENT
/\
/ \ (MOVE-a, DELETE-a)
PF-representation LF-representation

Figure 12.1: GB Model

In the GB model a crucial role is played by interacting systems of prin-
ciples which are listed in Figure 12.2. These systems of principles place
constraints thus filtering out ungrammatical representations.

X-bar theory

Thematic theory (theta theory)
Government (Definitions)

Case theory

Bounding theory

Binding theory

Control theory

Figure 12.2: GB Principles

Typically, various principles have some parameters associated with them.
These parameters are meant to make the grammar flexible enough to ac-
count for all the different languages.

12.2 The GB Modules

In what follows is a very brief summary of GB principles. It is based,
primarily, on Duarte (1990).

172 CHAPTER 12. GOVERNMENT AND BINDING

12.2.1 X-bar theory

The X-bar theory gives the structure of phrases in GB. It replaces the
phrase structure rules of earlier transformational grammars. It says that if
there is a head Xo, it has a maximal projection termed as X. The maximal
projection is a phrase optionally containing a complement and a specifier
as determined by the head and also possibly adjuncts. This can be stated
in terms of rule schema as follows, where curly brackets indicate the op-
tionality of the constituent:

(CF.1) X - adjunct X
(CF.2) X — X adjunct
math (CF3) X — Spec X
(CF.4) X — Xo Compl
(CF.5) X = adjunct X
(CF.6) X —» X adjunct

The order of constituents on the right hand side of rules (CF.3) and
(CF.4) may be language dependent, e.g., in Hindi Compl will precede Xo.
This is a simple example of a choice of parameter. The order shown here
is for English.

Xo is termed head and X is its maximal projection. Xo can be a lexical
category like N (noun), V (verb), A (adjective) or P (prepostion) or it can
be a functional category like infl, COMP etc. Spec, Compl and adjunct
must be maximal projections. Head controls the choice of Spec and Compl
both semantically as well as syntactically.

Projection Principle: Lexical properties must be represented by cat-
egorial structure at every level of syntactic representation (i.e., D- and
S-structure, and LF representation).

This principle which is not a part of any one of the seven systems of
principles listed in Figure 12.2 ensures that lexical requirement informa-
tion is present at each level of representation and, moreover, it also insists
that the information must be coded in terms of configurational positions,
a choice which is natural for English-like languages.

12.2.2 Theta Theory

f-Criterion:

1. If o is an argument of 3 then the position P occupied by « is assigned
one and only one 6-role R;

2. If B has a #-role R to assign, then this f-role is assigned to a position
P and P is occupied by one and only one argument.

12.2. THE GB MODULES 173

Note that in GB theory §-roles are assigned to syntactic positions and
not directly to arguments.

One of the main consequences of the #-criterion is that constituents are
allowed to move to non-thematic positions only. (This is a simple example
illustrating constraints on movement imposed by system of principles.)

12.2.3 Government

Before we define government, we will define some structural relations.

Definition C-command: a c-commands 3 iff
(a) a does not dominate 3, and
(b) the first branching node that dominates o dominates 3.

Definition M-command: a m-commands 3 iff
(a) a does not dominate 3, and
(b) every maximal projection that dominates « also dominates §.

Definition Intervene: S intervenes between a and f iff
S dominates a and does not dominate 3.

Definition (preliminary) Government: a governs j iff:

(a) a is a head;

(b) @ m-commands 3, and

(c) there is no intervening maximal projection between « and 3.

A revised definition and one we will use is as follows:
Definition Government: a governs (3 iff:

(a) « is a head;

(b) @ m-commands f; and

(c) there is no intervening barrier between a and £.

Where barrier is defined as follows:

Definition Barrier: Barrier is a maximal projection such that
(a) it is non-f-marked;

(b) is fully specified (i.e. its spec position is filled); and

(c) its head is a functional category.

Remark: The crucial idea behind government is to define the domain of
influence for a head.

174 CHAPTER 12. GOVERNMENT AND BINDING

Definition Proper Government: o properly governs [iff

1. Either it is a lexical government, that is:

e «a governs 3; and

e (is a lexical head

2. or, it is an antecedent government, in which a governs § except it
does not require o to be a head, it can be a maximal projection.
However, a must be co-indexed with .

12.2.4 Case Theory
Case Filter:

(i) Every NP with phonetic content must be case marked.
(ii) Every argument NP (distinct from PRO) must be case marked.

Case Assignment: Case is assigned by certain heads e.g.
1. verb assigns accusative case.
2. preposition assigns oblique case.

3. infl [+AGR] assigns nominative case.

Principle: Case is assigned under government.

12.2.5 Bounding theory

Subjacency: No instance of Move-a can cross more than one barrier.

12.2.6 Empty Category Principle (ECP)

Principle: All traces must be properly governed.

12.2.7 Binding theory

Definition Binding: « binds 3 iff:
(a) a c-commands 3; and
(b) @ and 8 are co-indexed

Binding Principles:

12.2. THE GB MODULES 175

(a) An anaphore must be bound in its governing category.
(b) A pronominal must be free in its governing category.
(c) An R-expression must be free everywhere.

Note: Here, Free means it should not be bound by a potential argument
position.

Definition Governing Category:

a is the governing category for g iff

« is the minimal maximal projection containing:
(a) B

(b) the governor of 3, and

(c) a SUBJECT

Definition SUBJECT: A SUBJECT is:
either AGR with respect to infl,
or a subject NP with respect to NPs and small clauses.

The tables given below indicate what items are anaphore and what are
pronominal. They include lexical categories as well as empty categories.

Lexical Categories Empty Categories
Pronominal Pronominal
+ - + -
a e \ frmmmmmmmmmmeee \
n I I I I | |
a + | - |himself | + | PRO | NP-trace |
P | | etc | I | |
h I - [-——- |
o I |proper | | |wh-trace |
r - | him Inoun I - | pro |Q-trace |
i | etc letc | | I I
c \ -/ \---- /

12.2.8 Constraints on movement

Based on the above principles, this is what we can say about movements
(Duarte, 1990):

1. What can be moved?
e Only heads and maximal projections are free to move.

2. Where can these be moved?

176 CHAPTER 12. GOVERNMENT AND BINDING

e The landing site has to be a non-thematic position.

e A head can only be moved to another head position and a max-
imal projection can only be moved to a maximal projection po-
sition.

3. By what process can a movement occur?

e If the target position is an empty spec or head position then the
process is of substitution else it will be by adjunction.

4. How far apart can a moved constituent and its trace be? This is
answered indirectly by the following conditions:

e Subjacency: In a single step no movement can cross more than
one barrier.

e ECP: All the traces must be properly governed.

e Binding theory: An NP-trace must be bound in its governing
category and a wh-trace (in general, a variable) must not be
bound in its governing category.

12.3 How Can GB Help in Parsing?

In an English-like language where primary information about thematic roles
is coded in terms of relative position and yet it also permits movements
for topicalization etc., it is not difficult to see the importance of various
constraints on movement which directly follow from various principles of
GB theory.

To begin with, one might suggest the following steps for parsing an
English like language.

1. Using X-bar system of principles to form phrasal categories on the
basis of lexical heads. This step may again be broken up into the
following sub-steps:

e Recognize lexical heads.

e Search for the longest well-formed sequence of specifiers and at-
tach it (i.e., make it a sister) to the phrasal category dominating
the lexical head.

e Non-deterministically propose possible Xs as complements.
2. Using the 6-criterion and projection principle, identify the needed
empty categories in the s-structure.

To decide the type of empty-category one may use the facts of follow-
ing kind.

12.3. HOW CAN GB HELP IN PARSING? 177

o If the position is not properly governed it must be a PRO (from
ECP).

e If the position has a case assigned to it, it must be a variable
trace. (from non NP-movement).

3. Using binding theory (in case of PRO, using control theory) find the
co-indexed phrase.
In case of a trace, determine its governing-category, and then
depending on the fact whether it is an NP-trace or a variable
look for the antecedent in the governing-category or outside it,
respectively.

Note that the domain of search need not cross more than one barrier.
Following are some examples from Saint-Dizier (1990) with some-what
simplified S-structure which illustrate the approach.
1. Relative Clause construction: Take the example:
The boy who Mohan met yesterday is coming tomorrow
S-structure of relative clause in the above is:
[comp who; Mohan met [Np t;] yesterday|

Note the empty category is not a PRO because it is properly governed
and it is not an NP-trace because it has accusative case assigned by
the verb. So it cannot be bound by an argument position co-indexing
it with *who’ satisfies all the constraints.

2. Passive Construction:

In case of passives, following additional assumptions are made:

e A passivized verb cannot assign case to its object NP.

e (-grid requirement of a passive verb differs in the following man-
ner from that of an active verb.
(a) No 6-role is assigned by a passive verb to its subject-NP in
d-structure
(b) A ‘by-complement’ with the #-role of the subject NP of the
active verb can be optionally present at d-structure.

Consider as an example:
A book was thrown.

[[vp a book); [was thrown [np ti]]

Here, the trace is an NP-trace because it is in a position which is
properly governed but does not have a case. So it must be bound
in its governing category which is the sentence itself and the NP in
subject position binds it appropriately.

178 CHAPTER 12. GOVERNMENT AND BINDING

3. Subject-to-subject raising
Consider the example sentence below with its S-structure:

Mohan seems to be on time.
linfi Mohan; seems[comp trace; [vp to be on time||

Again this is a case of NP-movement because it can not get case from
an infl with -AGR feature, so it moves to a non-§-marked position.
Note ’seem’ does not #-mark its subject position. (It seems Mohan is
on time.)

12.4 Conclusion

We have briefly sketched the GB theory in this chapter. Finally, we have
given some tentative suggestions about how it can be implemented for an
English like language. It should be mentioned that recently GB theory has
been superseded by the new minimalist programme of Chomsky.

Further Reading

Duarte (1990) is an excellent summary of GB theory; we strongly rec-
ommend it to NLP people wanting to learn more about the GB theory.
Chomsky (1981) is the original reference, but very difficult to read unless
one is already familiar with the issues being addressed. Haegeman (1991) is
a better source for reading about GB theory. Van Riemsdijk et al. (1986)
and Radford (1988) are excellent and highly readable sources on gram-
mar viewed from the perspective of Chomskyan Generative Enterprise. Of
course, they take their examples mainly from English.

Journal of Linguistic Inquiry published by MIT Press, Cambridge is the
primary source where researchers in GB publish their work.

Work on GB parsing has been published in Saint-dizier and Szpakowicz
(1990), Wehrli (1988), Berwick et al. (1991), etc.

This chapter is based on Duarte (1990) and Saint-Dizier and Szpakowicz
(1990). It was originally prepared for a tutorial on NLP at UNESCO 2nd
Regional Workshop on Computer Processing of Asian Languages (Bharati
et al., 1992b).

Chapter 13

Comparing GB with PG

It is argued in this chapter that many of the differences between GB and the
Paninian approach stem from differences in their goals. While the former
tries to answer why children are able to acquire language so effortlessly, the
Paninian approach addresses how information is conveyed using language
by a speaker to a listener.

13.1 Introduction

The problem that has intrigued generative linguists is how a human child
is able to acquire natural language without any formal training simply by
exposure to a miniscule amount of ‘positive’ language data. They pos-
tulate that there must be a universal grammar every child is born with,
and which gets instantiated to a particular grammar for the language to
which the child is exposed. The grammar allows the child to determine the
grammaticality of sentences.

The goal of the generative enterprise is to characterize the initial state
of knowledge of language that allows a human child to acquire the language
so effortlessly (by his or her intimate association with a speech community).
This is assumed to be distinct from other cognitive structures in the mind.

In contrast to above, the question that has intrigued Paninians is, how
is it that a speaker is able to convey information to a hearer by means of
natural language. How is the information that a speaker wants to convey,
represented or coded in language, and how is the hearer able to extract the
information. The goal of the Paninian enterprise is to construct a theory of
human communication using natural language. Grammar, a part of such
a theory of communication, is a system of rules that establishes a relation
between what the speaker decides to say and his utterance, and similarly,
the utterance and the meaning a hearer extracts form it.

179

180 CHAPTER 13. COMPARING GB WITH PG

The major task for the theory in generative enterprise is to correctly
classify sentences as grammatical or ungrammatical. Meaning comes in
through coindexing or theta assignment but at times, meaning and gram-
maticality may be at variance. For example, in anaphora, coindexing shows
what the grammar permits; on the other hand, there are known contexts
when a coindexing not permitted by the theory is accepted by native speak-
ers. (See Zribi-Hertz (1989) for examples.) Such instances are neither
interesting nor relevant for the theory according to Wasow (1979). The im-
plication of such a position is that a parser based on the theory may reject
and thus block further processing of a sentence which might be acceptable
in the given context.

The main task for the Paninian theory is to assign a meaning to a sen-
tence which is the same as that assigned by the hearer. Sub-division into
separate levels is a theory internal matter as long as the meaning assign-
ment remains the same. There is certainly no separate autonomous syntac-
tic level postulated by the theory. In fact, the Paninian Theory views the
range from the sentence to the meaning as consisting of levels of meaning,
each level more refined than the previous one. The early levels, call them
vyakaran levels, make minimal use of world knowledge and greater use of
morphological or karaka knowledge. The later levels make greater use of
world knowledge, intentions of the speaker and hearer, etc. It is important
to mention however, that even the vyakaran levels use the notion of vivak-
sha or speaker viewpoint which has a relation to intentions or pragmatics.
Figure 13.1 shows the vyakaran levels in detail, and besides these, shows
only the final meaning level as perceived by the hearer/speaker.

--- semantic level (what the

speaker has in mind)

—--— karaka level

--— vibhakti level

-—-- surface level
(uttered sentence)

Figure 13.1: Levels in the Paninian model

13.1. INTRODUCTION 181
The GB model, on the other hand, is shown in Figure 13.2. Here, there

Lexicon
I
| GENERATE-a
I
D-structure
|
| MOVE-a (Move any constituent
| to any position)
S-structure

/' \
PF-COMPONENT / \ LF-COMPONENT
/ \
/ \ (MOVE-a, DELETE-a)
PF-representation LF-representation

Figure 13.2: GB Model

are three levels of representation for a sentence: D-structure, S-structure
and LF-representation. The PF-representation is the sentence. There is
also a production component that generates representations at D-structure.

There is a significant difference between the two models which is some-
times missed in the details of levels. In the GB model, it seems that it
is tacitly assumed that meaning is an ‘objective’ event or entity out-there
in the world which is represented by means of the three levels of repre-
sentations. In the Paninian model, the meaning is a mental object in the
mind of the speaker relating the objective event or entity with the speaker’s
viewpoint it. This comes about with the way theta roles and karaka roles
are conceived in the two models.

It is instructive to compare the levels across the two models. To do
so it is important to identify relationships between some key categories
and relations across the models. The task is harder than it seems because
the terminology and the model for the generative enterprise is inspired
by a positional language such as English, whereas that for the Paninian
enterprise is inspired by a free word order language. In fact, incorrect
equivalences between terms has been a major source of confusion while
comparing the two models. First, karaka roles are different from thematic
roles. For example, karta karaka gets mapped to agent, instrument, and
patient respectively in sentences (1), (2) and (3), below.

(1) The boy opened the lock.
(2) The key opened the lock.
(3) The lock opened.

182 CHAPTER 13. COMPARING GB WITH PG

Karaka relations combine the notion of vivaksha or speaker viewpoint with
theta roles.

Further, according to us the so-called grammatical functions subject,
object etc. are at vibhakti level in the Paninian model. They have been
frequently sought to be defined as a distinct level between case and theta
roles. It should be noted that subject, object have arisen out of posi-
tional languages like English where they have an intuitive appeal as well
as natural and simple definitions and tests. In free word order languages
like Indian languages, the same information is contained in case endings or
post-positional or prepositional markers. Concepts of subject, object as a
distinct level are not only unintuitive but also it is very difficult to come
up with criteria or tests for deciding when something is a subject. Most
attempts try to define them configurationally for free word order languages,
at which point the grammar building runs into serious difficulties.

If we draw a picture incorporating the above insights, we have the pic-
ture shown in Figure 13.3. It should be mentioned here that many GB

--- meaning

|

|

1 it theta roles-——----—-----
—--- karaka level ---—-

|

|

--- vibhakti level--- -------- subject,object-—--—---
|
|
—--— sentence
Paninian levels GB Terms and their levels

Figure 13.3: Relationships between terms in the two models

theorists working on Indian languages define subject in such a way that it
turns out to be more or less the same as karta.

There is another difference in the concerns the two models have towards
formal power of grammars. Since the generative enterprise wants to char-
acterize the universal grammar that every human is born with, there is an
attempt to use a grammar formalism with as little formal power as possi-
ble. This would ensure that it generates only the grammatical sentences in
natural languages, and no more. The Paninian approach is neutral to such
concerns.

13.2. SUMMARY 183

The Paninian model focuses on karaka roles, while major research effort
in GB is on anaphora and quantifiers. So they both have something to
offer. It should be noted, however, that GB includes only reflexives and
reciprocals out of all the possible anaphora. These are a tiny fraction of
the total. Moreover, the theory does not give the referent of this restricted
class of anaphora but rather identifies a domain within which the referent
has to be found.

13.2 Summary

We give below a comparision of GB and Paninian approach in tabular
format. It summarizes the arguments given above.

Topic Generative Enterprise Paninian Approach
Motiva- How is the child able to ac- How is the speaker able to
ting quire language? convey information to the
question hearer using language?
Goal Study of innate and au- Study of language as a
tonomous structures in means of communication
the human mind relating
to language faculty as dis-
tinct from other cognitive
structures
Task Theory should classify Theory should explain the
sentences as grammatical process of going from
and ungrammatical meaning to sentences and
vice versa
Focus Isolates and studies Combines syntax, seman-
syntax tics and pragmatics in an
overall framework
Overall Indirect connection be- Direct connection between
model tween surface form (PF- surface form and meaning
representation) and mean-
ing (LF-representation)
Language Principles and terminol- inspired by free word or-
types ogy inspired by positional der languages

languages

184 CHAPTER 13. COMPARING GB WITH PG

Appendix A

Panini’s Grammar and
Sanskrit

In this appendix, we outline how the original Panini’s grammar applies
to sentences in Sanskrit. The original text presenting the grammar system
is called Ashtadhyayi and was written by Panini somewhere around 500
BC. This presentation is based on Kiparsky (1982) and focusses on: (1)
the relation between the syntax of actives, passives and statives, (2) the
connection between sentences and nominals, and (3) the relation between
cases and meanings.

A.1 Karaka Theory

The karaka ? system of Panini is the crucial element in accounting for the
issues mentioned above. Consider the following from Kiparsky (1982) where
the A’s are sentences and the Bs are nominals for active, passive and stative
as marked:

A.1 devadattah odanam pacati.
Devadatta (nom.) rice (acc.) cooking (active)
(Devadatta is cooking rice.)

1K.V. Ramakrishnamacharyulu of Rashtriya Sanskrit Vidyapeetha, Tirupati is the
co-author of this appendix.

2Pronounced as kaaraka. Let us also outline, here, our spelling scheme: Whenever
a sentence in Hindi is transliterated in roman, it is written using the scheme given in
Appendix B. This can be seen in the examples given in displayed material. However,
whenever a term from Indian language is adopted in English, the spelling used is based
on previous usage in literature. Thus, ‘karaka’ is not spelt as ‘kaarak’, or similarly,
‘karta’ is not spelt as ‘kartaa’. They continue to use the prevalent spelling in literature.

185

186 APPENDIX A. PANINI’'S GRAMMAR AND SANSKRIT

A.2 devadattena odanah pacyate.
(instr.) (nom.) (passive)
(Rice is being cooked by Devadatta.)

A.1b devadattah svapiti.
(nom.) (active)
(Devadatta is sleeping.)

A.3b devadattena supyate.
(instr.) (stative)
‘Devadatta is being slept’
(Devadatta is sleeping.)

B.1 devadattah odanasya paacaka.
(nom.) (genitive) (nom.)
(Devadatta cooker of rice.)

B.2 devadattena odanah pakva
(instr.) (nom.) (nom.)
(Rice cooked by Devadatta.)

B.3 devadattena odanasya paktir.
(instr.) (gen.) (nom.)
(The cooking of rice by Devadatta.)

B.1b devadattah svapitaa.
(nom.) (nom.)
(Devadatta a sleeper.)

B.3a devadattasya paktih.
(gen.) (nom.)
(Devadatta’s cooking.)

These can be shown as follows in a table (where the sentences numbers
suffixed by ‘b’ are for the verb ‘sleep’):

Prayoga Sentences Nominals
active A1, A1b B.1, B.1b
passive A2 B.2

stative A.3b B.3, B.3a

In Sanskrit, the nominal can occur all by itself (as an independent sentence
with an assumed implicit ‘be’ verb).

Panini accounts for these sentences (and nominals) as alternative real-
izations of the same underlying structure. The active is no more basic than

A.1. KARAKA THEORY 187

passive, just as the sentences are no more basic than the nominals. In this,
it introduces a set of grammatical functions called karakas, which spec-
ify relations between nominals and the verbal root. In words of Kiparsky
(1982; p.4) “They are neither semantic nor morphological categories in
themselves, but they correspond to semantics according to rules specified
in the grammar and to morphology according to other rules specified in the
grammar.”

In the examples involving the verb cooking above, the nominals repre-
sent two karakas: karta and karma. A karaka is a participant in the action
denoted by the verb. Semantically the karta is the most independent of all
the participants®, and karma is the “principal goal of the karta”*. In the
examples involving the verb ‘sleep’, there is only karta karaka.

The derivation of the sentence proceeds as follows. The “speaker” se-
lects (or the grammar freely generates) verbs and nouns from the lexicon,
corresponding to an action and the participants in it. Karaka relation be-
tween the nouns and verb are selected depending on the semantic relation
between them, and time reference is associated with the verb. This is at
the karaka level representation (See Fig. 5.2).

From the karaka level representation, vibhakti level representation is
generated using Panini’s sutras (dealing with karakas). In this representa-
tion, vibhakti (or case) is identified for each noun and verb. The sutras are
rules which apply on a representation to produce another representation
at another level. Panini’s sutras dealing with morphology apply on the
vibhakti level representation to generate the actual words (and thus the
sentence).

The most important principle of the karaka theory is (Kiparsky, 1982):

Principle: Every karaka must be “expressed” by morphology, but no
karaka may be expressed more than once.

Here “express” is used in a technical sense.

Let us look at the derivation of the sentence A.1 (devadattah odanam
pacati). The derivation is initiated by the speaker wanting to express that
‘Devadatta is cooking rice.” At the karaka level, this results in a structure
consisting of verbal root ‘pac’ and noun roots ‘devadatta’ and ‘odana’,
with ‘devadatta’ as karta, and ‘odana’ as karma. Further, the verbal root
has ongoing time (vartamaana) and active prayog (loosely, active voice)
associated with it.

From the above structure at karaka level, we generate the structure at
the vibhakti level. The verb gets the abstract present tense marker ‘1aT’®

3 Ashtadhyayi sutra no. 1.4.54: svatantrah kartaa.
4Sutra 1.4.49 kartur iipsitatamam karma.
5Sutra 3.2.123 vartamaane laTa.

188 APPENDIX A. PANINI’'S GRAMMAR AND SANSKRIT

By another rule, the tense laTa “expresses” (in the technical sense)
either (i) karta, (ii) karma or (iii) state®. The active prayog (active voice)
selects (i). In other words, laTa expresses karta. (Note that choices (ii) and
(iii) produce sentences A.2 and A.3, respectively.)

The generation of vibhaktis of the nominals is as follows. Karma karaka
causes an accusative ending (dvitiiyaa or second vibhakti) to be assigned to
‘odana’”. Karta karaka normally causes an instrumental ending (tritiiyaa
or third vibhakti) to be assigned to the nominal bearing the karta karaka
relation®. But here the leading principle that nothing is expressed more
than once (anabhihite) comes into play. Since karta has already been ex-
pressed by laT, it should not be expressed again. Thus, the instrumental
case is not assigned to ‘devadatta’. Instead, nominative case (prathamaa
or first vibhakti) is assigned to ‘devadatta’, when only the nominal stem
notion, gender and number remain to be expressed®.

Finally, the representation at the vibhakti level is taken and the word
forms are generated.

The derivation processes of nominals and sentences are completely par-
allel. They are derived from identical karaka relations between the nouns
and the verb.

The verbal noun can again be in three prayog expressing karta, karma
or the process. This gives us three kinds of nominals shown in B.1, B.2 and
B.3, respectively. In B.1, the derivation is like A.1 except that the karma
of verbal noun is expressed by the genitive case'C.

Thus, the actives, passives, and statives on the one hand and sentences
and nominals on the other hand, can be analyzed elegantly in a parallel
manner by the karaka theory.

A.2 Control

Karaka system is also important in formulating control of non-finite verbs
in complex sentences. Consider the following sentences, for example:

C.1 graamam aagatya devdattah odanam pacati.
village-Acc. Devdatt-Nom. rice-Acc. cooks
having-arrived
(Having arrived at the village,Devdatta cooks rice.)

C.2 graamam aagatya devdattena odanah pacyate.
Acc. instr. nom.

6Sutra 3.4.69 lah karmani ca bhaave caakarmakebhyah.

7Sutra 2.3.2 karmani dvitiiyaa.

8Sutra 2.3.18 kartrikaranyoa tritiiyaa.

9Sutra 2.3.46 praatipadikaarthaling-aparimaana vacanamaatre prathamaa.
10Sytra 2.3.65 kartrikarmonoh kriti.

A.2. CONTROL 189

((Devdatta) having arrived at the village, rice was
cooked by Devdatta.)

Here, the agent of ‘arrive’ remains unchanged in C.1 and C.2 because the
overtly specified karta of ‘cook’ remains the same. Panini gives the rule
which says that:

Karta of the gerund suffix (ktva in Sanskrit) is the same as the karta of
the main verb!!.

Note that this is unlike English, where control is formulated in terms of
subject, object etc.

Panini has given great importance to control in non-finite verbs. A
number of sutras give rules for control of such verbs. For example, Sutra
3.3.158 for verbal roots with tumun (infinitive of purpose, such as, to go)'2.

Further Reading

This appendix is based on Kiparsky (1982). Original sources are Panini’s
Ashtadhyayi written somewhere between 2400 to 2600 years ago, Patanjali’s
Mahabhashya (some 2100 years ago), Bhartrahari’s Vakyapadiya (roughly
1500 years ago), Kaundbhatta’s Vaiyakarana- bhushanasara (about 350
years ago), Nagesh Bhatt’s Laghumanjusha (about 250 years ago). All
these were written in Sanskrit.

The above are part of the Paninian tradition and are available with
commentary (in English except as noted): Jigyasu (1979) (in Hindi) on
Ashtadhyayi; Joshi (1968) and Kielhorn (1970) on Mahabhashya; Shastri
and Tripathi () (in Sanskrit) on Vaiyakarana- bhushanasara; Abhyankar
and Limaye (1965) and Helaraja on Vakyapadiya (Bhartrahari()); etc.

Shastri (1973) (in Hindi) and Cardona (1988) are good materials on the
Paninian tradition. For recent debates on Paninian tradition see Deshpande
(1985), Kiparsky (1982), Matilal (1982), Cardona (1976), among others.

It is important to mention that there is a view that Tolkappiyam’s
grammar for Tamil predates Panini. Similarly, there were a number of
pre-Paninian grammars for Sanskrit. All these are similar in spirit. There
is a need to study Tolkappiyam’s grammar for Tamil from computational
viewpoint. Our conjecture is that it will be instructive and will offer similar
but interesting insights.

There is a vast amount of literature on the Paninian and related tradi-
tions. See Cardona (1976) for a survey of research.

There are many discussions related to the Paninian tradition, in the
literature of Navya-Nyaya (Indian system of logic and inference) and that
of Mimamsa (Indian system of discourse analysis).

1 Sutra 3.4.21 samanakartrikayoh puurvakaale.
12Sutra 3.3.158 samaanakartrikesu tumun.

190 APPENDIX A. PANINI’'S GRAMMAR AND SANSKRIT

Appendix B

Roman Notation for
Devanagri

191

192 APPENDIX B. ROMAN NOTATION FOR DEVANAGRI

Table 1: Notation used in this book

AAET 5 T & WY
aaai o u wmEe
Toar etz o4
et o culd H =
T EH T Y F
k khg ghn
T W A HA A
c chi th n
2 3 F Z |
T ThD Dh I
A9 T 9 5
t th d dhn
T % & T A

p phb bh m
I 7 W@ 9 §T 9 HF

vtr 1 v sh 5 s h

193

Table 2: Internal representation in the computer

AAE T F & KT
afi1 I u Tqge
oA a3 x4
o OMHE
H 0 9 F
Eg Gf
O oA "HA A
c &1 J F
23 3 4 m

t T 4D I
79 =9 7

wWoOwWHE AN
T % § F N

p P b B m
I3 o 79 1 9 975

vir 1l v 5 Esh

Conversion programs between this notation and ISCII standard
are available free of charge from the authors.

d = g4

194 APPENDIX B. ROMAN NOTATION FOR DEVANAGRI

Bibliography

[1]

[2]

[3]

[4]

[5]

[6]

[7]

[8]

Abhayankar, K.V., and V.P. Limaye, Vakyapadiya of Bhartrhari, San-
skrit and Prakrit Series, Vol. 2, University of Poona, 1965.

Ahuja, R.K., Thomas L. Magnanti, and James B. Orlin, Network
Flows: Theory, Algorithms and Applications, Prentice-Hall, Engle-
wood Cliffs, New Jersey, 1993.

Barton, G. Edward, Robert C. Berwick, and Eric S. Ristad, Compu-
tational Complexity and Natural Language, MIT Press, Cambridge,
MA, 1987.

Berwick, Robert C., S.P. Abney, and C. Tenney, (eds.), Principle-
Based Parsing: Computation and Psycholinguistics, Kluwer Aca-
demic, Boston, 1991.

Bhanumati, B., An Approach to Machine Translation among Indian
Languages, Tech. Report TRCS-89-90, Dept. of CSE, IIT Kanpur,
Dec. 1989.

Bharati, Akshar and Rajeev Sangal, A Karaka Based Approach to
Parsing of Indian Languages, In COLING90: Proc. of Int. Conf. on
Computational Linguistics (Vol. 3), Helsinki, Association for Com-
putational Liguistics, NY, August 1990, pp. 25-29.

Bharati, Akshar, Rajeev Sangal, and Vineet Chaitanya, Natural Lan-
guage Processing, Complexity Theory and Logic, In Foundations
of Software Technology and Theoretical Computer Science 10, Lec-
ture Notes in Computer Science 472, Springer Verlag Berlin, 1990a,
pp-410-420.

Bharati, Akshar, Vineet Chaitanya, and Rajeev Sangal, A Compu-
tational Framework for Indian Languages, Technical Report TRCS-
90-100, Dept. of CSE, IIT Kanpur, July 1990b. (Course notes for
Intensive Course on NLP for Linguists, Vol. 1).

195

196

[9]

[10

—

[15]

[16]

[18]

BIBLIOGRAPHY

Bharati, Akshar, Vineet Chaitanya, and Rajeev Sangal, Local Word
Grouping and Its Relevance to Indian Languages, In Vijay P. Bhatkar
and Kiran M. Rege, editors, Frontiers in Knowledge Based Comput-
ing, pages 277-296. Narosa Publishing House, New Delhi, 1991.

Bharati, Akshar, Vineet Chaitanya, and Rajeev Sangal, A Computa-
tional Grammar for Indian Languages Processing, Indian Linguistics
Jjournal, 52(1-4):91-103, Mar.—Dec. 1991a.

Bharati, Akshar, Vineet Chaitanya, and Rajeev Sangal, Machine
Translation and the Language Barrier, In V V S Sarma, N Viswanad-
ham, B Yegnanarayana, and B L Deekshatulu, editors, Artificial In-
telligence and Expert System Technologies in the Indian context, vol-
ume 2, pages 58—66. Tata—McGraw Hill, New Delhi, 1991b.

Bharati, Akshar, S.A. Nawathe, Vineet Chaitanya, and Rajeev San-
gal, A New Inference Procedure for Conceptual Graphs, In 4th Uni-
versity of New Brunswick Artificial Intelligence Symposium, Freder-
iction, N.B. Canada., 19-21 Sept. 1991d.

Bharati, Akshar, Vineet Chaitanya, and Rajeev Sangal, Computa-
tional Linguistics and Its Relation to Linguistics, International Jour-
nal of Dravidian Linguistics, XX1(2):106-114, June 1992a.

Bharati, Akshar, Vineet Chaitanya, and Rajeev Sangal, LFG, GB and
Paninian Frameworks: An NLP Viewpoint, In Tutorial on NLP at
CPAL-2: UNESCO 2nd Regional Workshop on Computer Processing
of Asian Languages, Dept. of CSE, IIT Kanpur, 12-16 March 1992b,
pp.1-42. (Also available as TRCS-92-140, Dept. of CSE, IIT Kanpur.).

Bharati, Akshar, Y, Krishna Bhargava, and Rajeev Sangal, Reference
and Ellipsis in an Indian Languages Interface to Databases, Computer
Science and Informatics Journal 23, 3, Sept. 1993, pp. 60-82.

Bharati, Akshar and Rajeev Sangal, Parsing Free Word Order Lan-
guages using the Paninian Framework, In ACL93: Proc. of Annual
Meeting of Association for Computational Linguistics. Association for
Computational Linguistics , NY., 1993a, pp105-111.

Bharati, Akshar, Vineet Chaitanya, and Rajeev Sangal, Course ma-
terial on A Computational Grammar Based on Paninian Framework,
Indian Society for Technical Education, Ministry of Human Resource
Development, New Delhi, October 1993b.

Bharati, Akshar, Vineet Chaitanya, and Rajeev Sangal, Anusaraka or
Language Accessor: A Short Introduction, In Presented at Seminar

BIBLIOGRAPHY 197

on Automatic Translation, Thiruvananthpuram, October 1993c. Int.
school of Dravidian Linguistics. (Also available as TRCS-93-205 Dept.
of CSE, IIT Kanpur).

[19] Bharati, Akshar, Vineet Chaitanya, and Rajeev Sangal, Anusaraka
as a Measuring Device for the Linguist, In Presented at the Dialogue
on Future Linguistics in India, 22-24 Dec. 1993. Central Institute
fo Indian Languages, Mysore, December 1993d. (Also available as
TRCS-93-210 Dept. of CSE, IIT Kanpur.).

[20] Bharati, Akshar, Vineet Chaitanya, and Rajeev Sangal, An appro-
priate strategy for machine translation in india, In S.S. Agarwal and
Subhash Pani, editors, Information Technology Applications in Lan-
guage, Script & Speech, New Delhi, 1994a. BPB Publications.

[21] Bharati, Akshar, Vineet Chaitanya, and Rajeev Sangal, Tree Adjoin-
ing Grammar and Paninian Grammar, Technical Report TRCS-94-
219, Dept. of CSE, IIT Kanpur, March 1994b.

[22] Bhargava, Y.K., Reference and Ellipsis in a NL Interface to
Databases, M.Tech. thesis, Dept. of CSE, IIT Kanpur, 1992.

[23] Bhartrahari, Sadhana Sumuddesha (III kanda), in Bhartrahari,
Vakyapadiya with the commentry of Helaraja, Poona. (Translation
in English by K. Subramanya Iyer, Poona)

[24] Bhatt, Rajesh, Paninian Theory for English, B.Tech. thesis, Dept. of
CSE, IIT Kanpur, 1993.

[25] Block, Hans-Ulrich, and Hans Haugeneder, An Efficiency-Oriented
LFG Parser, In Reyle and Rohrer (1988), pp.149-176.

[26] Bresnan, Joan, (ed.), The Mental Representation of Grammatical Re-
lations, M.I.T. Press, Cambridge, MA, 1982.

[27] Budhiraja, Navin, Subrata Mitra, Harish Karnick, and Rajeev San-
gal, Parsing Generalized Phrase structure Grammar with Dynamic

Expansion, Proc. of Int. Workshop on Parsing Technologies. Center
for Machine Translation, CMU, Pittsburg, Aug. 1989, pp. 458-467.

[28] Cardona, George, Panini: A Survey of Research, Mouton, Hague-
Paris, 1976.

[29] Cardona, George, Panini: His Work and Its Tradition, (Vol. 1: Back-
ground and Introduction), Motilal Banarsidas, Delhi, 1988.

[30] Chierchia, Gennaro, and Sally McConell-Ginet, Meaning and Gram-
mar, MIT Press, Cambridge, Mass., 1991.

198 BIBLIOGRAPHY

[31] Chomsky, Noam. Lectures on Government and Binding, Foris, Dor-
drecht, 1981.

[32] Chomsky, Noam. Knowledge of Language: Its Nature, Origin and
Use. Praeger Publishers, New York, 1986.

[33] Copeland, C., J. Durand, S. Krauwer, and B. Maegaard, The Eurotra
Linguistic Specification, Studies in Machine Translation and Natural
Language Processing, Vol. 1, Office for Official Publications of Com-
mission of the European Communities, Luxemburg, 1991.

[34] Covington, Michael A., Parsing Discontinuous Constituents in Depen-
dency Grammar, (Technical Correspondence), Computational Lin-
guistics, 16,4 (Dec. 1990), p.234.

[35] Dash, K.C., (ed.), Indian Semantics, Agamakala Publications, Delhi,
1994.

[36] Date, C.J. Introduction to Database Systems, Addison-Wesley, Read-
ing, MA, 1987.

[37] Deshpande, Madhav M., Ellipses and Syntactic Qverlapping: Current
Issues in Paninian Syntactic Theory, Bhandarkar Oriental Research
Institute, Poona 411004 India, 1985.

[38] Deo, Narsingh. Graph Theory. Prentice-Hall, Englewood Cliffs, New
Jersey, 1974.

[39] Dorr, Bonnie, A Survey of Courses in Computational Linguistics,
Assoc. of Computational Linguistics, New Jersey, 1994.

[40] Duarte, Ines. X-Bar Theory: Its Role in GB Theory. In Natural Lan-
guage Processing, Lecture Notes in Aritificial Intelligence, Springer
Verlag, Berlin, 1990.

[41] Earley, Jay, An Efficient Context-Free Parsing Algorithm, Commu-
nications of ACM 6, 8, 1970, pp.451-455.

[42] Evens and Larry Karttunen, Survey on Computational Linguistics
Courses, Association of Computational Linguistics, New Jersey, 1983.

[43] Findler, Nicholas V. (ed.), Associative Networks: Representation and
Use of Knowledge by Computer, Academic Press, New York, 1979.

[44] Fillmore, Charles J., The Case for Case, In E. Bach and R.T. Harms
editors, Universals of Linguistic Theory, Holt Rinehart and Winston,
New York, 1968, pp.1-88.

BIBLIOGRAPHY 199

[45] Gazdar, G., E. Kleine, G.K. Pullum, and I.A. Sag, Generalized Phrase
Structure Grammar, Basil Blackwell, 1985.

[46] Gupta, Ashish, S. Melhotra, and M. Saxena A Parser for LFG and a
Grammar for Hindi, B.Tech. thesis, Dept. of CSE IIT Kanpur, 1988.

[47] Gupta, Sandeep K.S., Vineet Chaitanya, Harish Karnick, and Rajeev
Sangal, An Architecture for Parallel and Distributed Parsing of In-
dian Languages, Technical Report, TRCS-89-82, Dept. of CSE IIT
Kanpur, 1989.

[48] Haegeman, L., Introduction to Government and Binding Theory,
Basil Blackwell, 1991.

[49] Harris, Larry R, User-Oriented Database Query with ROBOT Natu-
ral Language Query System, Int. J. of Man-Machine Studies, 1977.

[50] Hausser, Roland, Computation of Language, Springer Verlag, Berlin,
1989.

[51] Hendrix, G.G., Earl Sacerdoti, D. Sagalowicz, and J. Slocum, Devel-
oping a Natural Language Interface to Complex Data, ACM Trans.
on Database Systems 3, 2, 1978, pp.105-147.

[52] Hopcroft, J.E. and R.M. Karp, “A n®? Algorithm for Maximum
Matching in Bipartite Graphs,” J. SIAM Comp. 2 (1973), pp.225-
231.

[53] Hopcroft, J.E. and Jeffrey D. Ullman, Intro. to Automata Theory,
Languages, and Computation, Addison-Wesley, 1979.

[54] Horowitz, Ellis, and Sartaj Sahni, Computer Algorithms, Computer
Science Press, 1978.

[55] Iyer, K. Subramanya, Bhartrahari on Means, University of Poona,
pp- 283-343.

[66] Jigyasu, Brahmdatt. Ashtadhyayi (Bhashya) Prathamavrati, three
volumes, Ramlal Kapoor Trust Bahalgadh, (Sonepat, Haryana, In-
dia), 1979. (In Hindi)

[67] Joshi, Aravind K., Tree Adjoining Grammar: How much Context-
Sensitivity is Required to provide reasonable Structural Description.
In D. Dowty, L. Karttunen, and A. Zwicky (eds.), Natural Language
Parsing, Cambridge University Press, Cambridge, UK, 1985, pp 206-
250.

200 BIBLIOGRAPHY

[58] Joshi, Aravind K., An Introduction to Tree Adjoining Grammars.
In A. Manaster-Ramer (ed.), Mathematics of Language, John Ben-
jamins, Amsterdam, 1987.

[59] Joshi, Aravind K., Processing Crossed and Serial Dependencies, J. of
Language and Cognitive Processes 5, 1, 1990, pp.1-27.

[60] Joshi, S.D. (editor). Patanjali’s Vyakarana Mahabhashya, (several
volumes), Univ. of Poona, Pune, 1968.

[61] Kaplan, R.M., and Joan Bresnan, Lexical Functional Grammar:
A Formal System for Grammatical Representation, In The Mental
Representation of Grammatical Relations, Joan Bresnan (ed.), MIT
Press, Cambridge, 1982, pp. 173-281.

[62] Kashket, Michael B., Parsing a free-word-order language: Warlpiri,
Proc. of 24th Annual Meeting of ACL, 1986, pp. 60-66.

[63] Katz, J.J., and J.A. Fodor, The Structure of Semantic Theory, Lan-
guage 39, 1963, pp.170-210.

[64] Kay, Martin, Functional Grammar, Proc. 5th Annual Meeting of the
Berkeley Linguistics Society, 1979, pp.142-158.

[65] Kielhorn, F.; (ed.), The Vyakarana-Mahabhashya of Patanjali, Otto
Zeller Verlag Osnabruck, 1970, (Reprint of edition 1880).p. 6 (m 1.1.1)
(In Sanskrit).

[66] King, Margaret, A Tutorial on Machine Translation, Working Paper
53, ISSCO, Geneva, 1987.

[67] Kiparsky, P., Some Theoretical Problems in Panini’s Grammar,
Bhandarkar Oriental Research Institute, Poona 411004 India, 1982.

[68] Knuth, Donald E., Fundamental Algorithms, Addison-Wesley, 1973.

[69] Kuhn, H-W., “The Hungarian Method for the Assignment Problem”,
Naval Research Logistics Quarterly, 2 (1955), pp.83-97.

[70] Matilal, B.K., Some Comments of Patanjali under P.1.2.64, Proc. of
the International Seminar on Panini, Centre of Advanced Study in
Sansgkrit, University of Poona, 1982, pp. 119-126.

[71] Mohanan, K.P., Grammatical Relations in Malayalam, In The Mental
Representation of Grammatical Relations, Joan Bresnan (ed.), MIT
Press, Cambridge, 1982, pp. 504-589.

[72] Narasimhan, R., Modeling Language Behaviour, Springer-Verlag,
Berlin, 1981.

BIBLIOGRAPHY 201

[73] Narayana, V.N., Anusaraek: A Device to Overcome the Language Bar-
rier, Ph.D. thesis, Dept. of CSE, IIT Kanpur, January 1994. Submit-
ted.

[74] Nirenberg, Sergie, Machine Translation: Theoretical and Methodolog-
ical Issues, Cambridge University Press, Cambridge, UK, 1987.

[75] Papadimitrou, Christos H., and K. Steiglitz, Combinatorial Optimiza-
tion, Prentice-Hall, Englewood Cliffs, New Jersey, 1982.

[76] Patnaik, B.N., Lexical Functional Grammar, Course Notes for NLP
for Linguists, Vol. 2: Some Computational Models of Language, 1990.
(Available as Technical Report TRCS-90-101, Dept. of CSE IIT Kan-
pur.)

[77] Perraju, Bendapudi V.S., Algorithmic Aspects of Natural Language
Parsing using Paninian Framework, M.Tech. thesis, Dept. of CSE,
IIT Kanpur, Dec. 1992.

[78] Pollard, C., Lecture Notes on Head-Driven Phrase Structure Gram-
mars, Center for the Study of Language and Information (CSLI),
University of Chicago Press, 1985.

[79] Pollard, C., and Ivan Sag, An Information-Based Approach to Syntaz
and Semantics, Vol. 1, CSLI Lecture Notes 13, Stanford University,
1987.

[80] Radford, Andrew. Transformational Grammar, Cambridge Univer-
sity Press, UK, 1988.

[81] Ramakrishnamacharyulu, K.V., Paninian Linguistics and Computa-
tional Linguistics, Samwit, Series no. 27, Academy of Sanskrit Re-
search, Melkote, Karnataka, 1993, pp. 52-62.

[82] Ramesh, P.V. and Rajeev Sangal, Issues in Implementation of LFG,
Proc. of National Seminar on NLP, Vishakhapatnam, India, Dec.
1989. (Paper available as Technical Report TRCS-89-87, Dept. of
CSE IIT Kanpur.)

[83] Ravisankar, P.V., Enhancements to the Linguist’s Workbench,
M.Tech. thesis, Dept. of CSE, IIT Kanpur, 1992.

[84] Reingold, E.M., and R.N. Reingold, PascAlgorthims, Scott, Foreman
and Co., Glenview, Illinois, 1988.

[85] Reyle, Uwe, and Christian Rohrer (eds.), Natural Language Parsing
and Linguistic Theories, D. Reidel Publishing Company, Dordrecht,
1988.

202 BIBLIOGRAPHY

[86] Rogers, James, and K. Vijay-Shanker, A Formalization of Partial
Description of Trees, Draft, June 1992.

[87] Rogers, James, and K. Vijay-Shanker, Reasoning with Descriptions of
Trees, ACL92: Proc. of Annual Meeting of Assoc. of Computational
Linguistics, ACL, 1992.

[88] Rogers, James, and K. Vijay-Shanker, Obtaining Trees from Their
Descriptions: An Application to Tree-Adjoining Grammars, Compu-
tational Intelligence journal, 1993 (Submitted).

[89] Saint-Dizier, Patrick, Yannick Toussaint, Christophe Delaunay, and
Pascale Sebillot, A Natural Language Processing System Based on
the Government and Binding Theory, in Saint-Dizier and Szpakowicz
(1990), pp- 108-140.

[90] Saint-Dizier, Patrick, and S. Szpakowicz, (eds.), Logic and Logic
Grammars for Language Processing, Ellis Horwood, Chicester, 1990.

[91] Sangal, Rajeev, Machine Translation, 2001 (formerly Science Today),
Jan. 1989.

[92] Sangal, Rajeev, Programming Paradigms in LISP, McGraw Hill, New
York, 1991.

[93] Sangal, Rajeev and Vineet Chaitanya, An Intermediate Language for
Machine Translation: An Approach based on Sanskrit Using Concep-
tual Graph Notation, Computer Science € Informatics, Journal of
Computer Society of India, 17, 1, pp. 9-21, 1987.

[94] Sangal, Rajeev, Vineet Chaitanya and Harish Karnick, An Approach
to Machine Translation in Indian Languages, Proc. of Indo-US Work-
shop on Systems and Signal Processing, Indian Institute of Science,
Bangalore, Jan. 1988.

[95] Schabes, Yves, Mathematical and Computational Aspects of Lezical-
ized Grammars, Ph.D. thesis, Univ. of Pennsylvania, 1990.

[96] Schank, Roger P., and R.P. Abelson, Scripts, Goals, Plans and Un-
derstanding, Lawrence Earlbaum Associates, Hillsdale, NJ, 1977.

[97] Sengupta, Probal, On Lezical and Syntactic Procesing of Bangla Lan-
guage by Computer, Ph.D. thesis, Indian statistical Institute, Cal-
cutta, Sept. 1993 (submitted).

[98] Shastri, Charudev, Vyakarana Chandrodaya (Vols. 1 to V). Delhi:
Motilal Banarsidass. 1973. (In Hindi)

BIBLIOGRAPHY 203

[99] Shastri, Gopal, and Ramprasad Tripathi, Vaiyakarana
Bhushansara: Sarala Subodhini Vyakhyadvayopeta, Chaukhambha
Sanskrit Series Office, Varanasi. (In Sanskrit)

[100] Shieber, Stuart M., Separating Linguistic Analysis from Linguistic
Theories, In Natural Language Parsing and Linguistic Theories, U.
Reyle and C. Rohrer, (eds.), D. Reidel, Dordrecht, 1988, pp. 33-68.

[101] Sowa, John, Conceptual Structures, Addison-Wesley, Reading, 1985.

[102] Srinivas, B., Linguist’s Workbench: A Grammar Development Tool
for Indian Languages, M.Tech. thesis, Dept. of CSE, IIT Kanpur,
May 1991.

[103] Stabler, Jr., Edward P., Parsing as Logical Constraint Satisfaction,
in Saint-Dizier and Szpakowicz (1990), pp. 72-93.

[104] Tennant, Harry, Natural Language Processing, Petrocelli Books, New
York, 1981.

[105] Tomita, Masaru, Efficient Parsing for Natural Language, Kluwer Aca-
demic Publishers, Boston, 1985.

[106] Ullman, Jeffrey D., Principles of Database Systems, Computer Sci-
ence Press, 1987.

[107] van Riemsdijk, Henk C., and Edwin Williams, Introduction to the
Theory of Grammar, MIT Press, 1986.

[108] Vijay-Shanker, K., Using Descriptions of Trees in a Tree Adjoining
Grammar, Computational Linguistics 18, 4 (Dec. 1992), pp. 481-517.

[109] Vijay-Shanker, K., and Aravind K. Joshi, Unification Based Tree Ad-
joining Grammer. In J. Wedekind (eds.), Unification-Based Gram-
mars, M.LT. Press, Cambridge, MA, 1991 (to appear).

[110] Wasow, T., Anaphora in Generative Grammar, E. Story-Scientica
P.V.B.A. Scientific Publishers, Brussels, 1979.

[111] Wehrli, Eric, Parsing with GB-Grammar, In Natural Language Pars-
ing and Linguistic Theories, U. Reyle and C. Rohrer, (eds.), D. Reidel
Publishing Co., Dordrecht, 1988, pp. 177-201.

[112] Wiederhold, Gio, Database Design, McGraw-Hill, New York, 1982.

[113] Winograd, Terry, Understanding Natural Language, Academic Press,
New York, 1972.

204 BIBLIOGRAPHY

[114] Winograd, Terry, Language as a Cognitive Process, Vol. 1: Syntaz,
Addison-Wesley, Reading, MA, 1983.

[115] Wirth, Niklaus, Algorithms + Data Structures = Programs, Prentice-
Hall, Englewood Cliffs, New Jersey, 1973.

[116] Wilensky, Robert, Planning and Understanding, Addison-Wesley,
Reading, MA, 1983.

[117] Woods, William A., Lunar Rocks in Natural English: Explorations
in Natural Language Question Answering, In A. Zampolli (ed.), Lin-
guistic Structures Processing, Elsevier North-Holland, 1977.

[118] Younger, D.H., Recognition and Parsing of Context Free Languages
in Time n3, Information and Control 10, 1967, pp. 189-208.

[119] Zribi-Hertz, Anne, Anaphora, Binding and Narrative Point of View:
English Reflexive Pronouns in Sentence and Discourse, Language 65,
4, 1989, pp. 695-727.

Index

80-20 rule, 27, 110

aakaankshaa, 25, 69
abbreviations for karakas, 91
ablative, 65

accusative, 65
active-passive, 120, 177
active-passives, 69

actives, 185

activity, 15, 60

adhikarana, 64
adjective-noun, 15
adjoining operation, 147
adjunct, 172

adjunction, 146, 163
adjuncts, 119

agent, 16, 63

agreement, 50, 81, 127, 152
agreement, relax, 112
akanksha-yogyata, 126
ALPAC report, 104
analyzer, 34

anaphora, 180, 183
anchors, 154

animacy preference, 97
antecedent government, 174
anusaraka, 106

apadan, 64

applications, NLP, 1
arguments of verb, 16
arguments, mandatory, 166
arguments, optional, 166
arguments, sentential, 167
ashraya, 63

205

Ashtadhyayi, 185
assignment, 93, 96
attribute grammars, 131
auxiliary tree, 146

background knowledge, 8
barrier, 173

Bhartrahari, 71, 80

binary search, 39

binding, 174

binding priniple, 174
binding theory, 177
bipartite graph matching, 93

c-commands, 173
c-structure, 121

case assignment, 174

case filter, 174

cases, 185

CFG, 119, 128, 135, 141, 156, 172
Chomsky hierarchy, 4
closeness preference, 97
co-occurrence restrictions, 126
coherence, 126, 131
coindexing, 127
communication, 7, 59, 179
COMP, 172

compilation, 42
compilation, incremental, 47
compl, 172

completed tree, 148
completed tree in TSG, 140
completeness, 126, 131
complex symbols, 128
complex categories, 128

206

complex sentences, 70
compositional, 13

compound word, 33
computational grammar, 26
computational linguistics, 5
conjoined word, 33
constituent structure, 120, 121
constituents, 14

constraint graph, 88, 89
constraint satisfaction, 166
constraints, 69

constraints on movement, 175
context free grammar, 119
context free grammar, 139
Context Sensitive Grammar, 159
control, 70, 188

controllee, 127

controller, 127

core parser, 25, 87

cost function, 91

D-structure, 170, 181
database systems, 5
dative, 120, 123
default karaka chart, see under karaka,
chart, 67
default-exception, 53
delimiters, 13
demand, 25
demand groups, 88
demands, 69
dependency grammars, 90
derivation, 188
derivation tree, 144, 145
derivation trees, 163
derived tree, 141, 148
derived tree in TSG, 140
dictionary of roots, 38
direct case, 36
discrimination nets, 98
down-arrow, 123
duplication, 54

ECP, 174, 177

INDEX

empty category, 177

empty category principle, 174
empty element, 127

ergative, 65

Eurotra, 105

evolutionary system, 116
existential constraints, 131
express, 187, 188
extensibility, 27

f-structure, 121

feature, 35

feature structures, 152
feature structures, bottom, 155
feature structures, top, 155
features, 127

FGH-MT, 107

free word order, 67

free word order, 59, 64, 181
free word-order, 135, 136
functional specification, 123
functional structure, 121

garden-path sentences, 97

GB, 169, 179

generative enterprise, 4, 59, 179

governing category, 175

governing-category, 177

government, 173

Government and Binding, 169

governs, 173

GPSG, 128

graceful degradation, 28

grammar component, suitability,
26

grammar formalisms, 5

grammar, lexicalized, 139

grammaticality, 9, 179

Greibach Normal Form, 156

head, 172
history of MT, 103
HPSG, 132

INDEX

human aided machine translation,
103

ID-LP grammars, 168
incremental compilation, 47
indexes, 46

Indian traditional linguistics, 5
inference, 4

infl, 172

inflectionally rich, 59
information based approach, 7
information theoretic, 85
initial trees, 140

integer programming, 91
interlingua, 105, 116
intermediate verb, 71
intervenes, 173

inverse problem, 39

Japanese National Project, 105
jo-construction, 114

karaka, 65, 180, 181, 183, 185, 187
karaka chart, 67, 166

karaka chart transformation, 67
karaka level, 63

karaka relations, 16, 59, 67
karaka sharing, 75

karakas, 165

karana, 64

karma, 63, 67, 188

karma-kartr, 112

karta, 16, 61, 63, 67, 187, 188
Kaundbhatta, 61

ki construction, 113

knowledge representation, 4
kriya rupa charts, 50

lakshan charts, 87, 98
language barrier, 106
language bridge for jo, 114
language bridge for ki, 113
language bridge for ne, 115
language bridges, 113

207

language knowledge, 8

language universals, 10

lattice, 130

least upper bound, 130

leftness preference, 97

Lexical Functional Grammar, 119
lexicalised TAG, 146
lexicalization, 139

lexicon for LFG, 125
LF-representation, 170, 181
LFG, 119, 135, 139

linguistic area, 111

local word grouper, 50

locality, 139, 141

logic programming, 4

long distance movement, 126
long distance dependencies, 163
long distance dependency, 152, 167
LWG, 24

m-commands, 173

machine translation, 101

mandatory karaka, 69

matching, 94

maximal projections, 172

maximal matching, 95

maximal projection, 173

meaning, 13, 123

meaning level, 63, 180

measuring tool, 117

merit, 25

meta-variables, 123

meta-variables, bounded, 126

modification, linguistic theory, 16

modifier-modified structure, 14

modifier-modified tree, 71

modifier-modified trees, 163

modularity, 27

morphemes, 33

morphological analyzer, 22, 34

morphological analyzer, tradeoffs
in, 46

morphological generator, 34

208

MT, 2, 101
MT, FGH-MT, 107

natural language interface, 117
natural language processing, 5
ne construction, 115

NGs, 135

NL, 1

NLP, 1

nominal, 15

nominative, 65

non-terminal, 123

Noun groups, 53

noun groups, 49, 135

noun lakshan charts, 98
noun-verb modification, 15
NP-trace, 177

object, 119, 182
oblique, 36

oblique case, 53
optional arguments, 163

Panini, 80, 185
Paninian grammar, 67
Paninian approach, 59
Paninian grammar, 163
paradigm, 36
paradigm table, 37
parsarg, 24, 50, 65
parsargs, 53

parsing algorithm, 4
participant, 15
participants, 60
passives, 177, 185
PF-representation, 170, 181
PG, 163, 179

phala, 60

post-edit, 103
post-position, 24, 65
post-positions, 59

PP, 123

pragmatics, 6

prayog, 188

INDEX

predicate argument, 121
predicate arguments, 141
preference constraints, 97
prepositional phrase, 123
principles and parameters, 171
projection principle, 172
Prolog, 130

proper government, 174
properly governs, 174
psycholinguistics, 11

quantifiers, 183
quasi-trees, 166, 168

reduplication, 54
relative clause, 177
relativization, 148
result, 60

reverse suffix table, 42
rewriting, 139

S-structure, 170, 181
sakarmaka, 63
samaanidhakarana, 15
sampradana, 64

sandhi analyzer, 34
sannidhi, 25

Sanskrit, 67, 185

search, 39

semantic, 187

semantic type hierarchy, 97
semantico-syntactic, 62
semantics, 6

semantics in stages, 55
senses, 98

senses of words, 87
sentential arguments, 163
shared karakas, 70, 71
simple word, 33

solution graph, 89

sorted reverse suffix table, 43
source groups, 88

spec, 172

spelling scheme, 185

INDEX

state, 15

statistical approaches, 3
statives, 185

strategy for MT, 117
structure, 14

sub-actions, 60
sub-categorization, 126
subcategorization, 177
subjacency, 174
SUBJECT, 175

subject, 119, 138, 182
Subject-to-subject raising, 178
substitution, 139, 165
substitution nodes, 140
substitution operation, 141
substitution operation, 140
subsumption, 130

surface case, 65

surface level, 62

sutra, 187

swatantra, 61, 63

syntactic hole, 114
syntactico-semantic, 62
system feedback, 28
systems aspect, 26
systems aspect, large, 27

tadarthya, 64

TAG, 146, 152, 163
TAG parser, 167
TAM, 62

TAM label, 51

TAM label, 62, 67
TAM label, basic, 67
task domains, 103
TAUM-METEOQ, 104
TG, 169

thematic roles, 16
theta criterion, 172
theta relationships, 65
theta role, 165, 172
theta roles, 16
theta-criterion, 126

209

theta-roles, 119

topicalization, 132

trace, 174, 176, 177

transfer approach, 105
transformation, 67
transformational grammar, 169
transitive, 63

tree, 45

tree address, 141

Tree Substitution Grammar, 140
trie, 45

TSG, 140

type hierarchy, 97

unification, 120, 126, 154
uniqueness, 125

unit, 14

universal grammar , 179
universal grammar, 59
up-arrow, 123
utsarga-apavaada, 53
utsarga-apvada, 58

variables, 156

verb groups, 49

verb argument, 16
verb sense, 98

verb sequences, 50
verbal, 15

vibhakti, 65, 165, 187
vibhakti for verbs, 62
vibhakti level, 182
vibhakti level, 62, 63
visheshana, 14
visheshya-visheshana, 14
vivaksha, 60, 68, 180
vowel harmony, 47
vyapara, 60

weighted matching problem, 96
well-formedness conditions, 125
WET, 37

wh-question, 121

word, 33

210

word forms, 36
word forms table, 37
word group, 13
word groups, 50
word order, 59

X-bar theory, 172

yogyataa, 25, 69

INDEX

INDEX 211

212

INDEX

Glossary of Paninian and Other Terms

*

QH

E

karaka
karta karaka
karma karaka
karana karaka
sampradana-
karaka
apadana- karaka
adhikarana-
karaka,

lakshan-

chart

LWG

parsarg
¢ parsarg
ko parsarg
ne parsarg
se parsarg
kaa parsarg

PG

tadarthya

TAM

vibhakti

A ¥ before a sentence indicates that it is a bad
sentence.

Indicates output Hindi produced by anusaraka.
Indicates gloss in English.

Syntactico-semantic relation between a verb and its
arguments.

The most independent of the karakas (roughly, cor-
responds to agent, but not always.)

The goal argument of the verb.

The instrument.

The beneficiary of the action.

The fixed or reference object from which the sepa-
ration action takes place.
Time and location of the action.

Discrimination net.

Local word grouper.

Post position marker.

Nominative marker in Hindi.

Accusative or dative marker in Hindi.
Ergative marker in Hindi.

Instrumental or ablative marker in Hindi.
Genitive marker in Hindi.

Paninian Grammar (framework)

Purpose for which the action is carried out.
Tense aspect modality.

Collectively: case ending, post position or preposi-
tion of a noun, or TAM label of a verb.

